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Solar PV is Variable due to Clouds

Summertime PV can be very productive - up to 1kW - m™2 at the
surface of the earth. Clouds cause drastic variability, though, over periods
as short as a few minutes [7].
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On/off Insolation causes voltage swings in the
neighboring distribution system area.
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Figure: Illustration from [1].
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Simple Advection Model

Clouds move with the wind. A crude
estimate of downwind cloudiness can
be made by simply translating the
existing clouds downwind to = + Ax
at time ¢t + At, where Az = u,At.

= This may work well for stable clouds, but not for convective cumulus
clouds, which are ever-changing.
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The Proper Orthogonal Decomposition (POD) has

been used for many years to model fluid flows [3].

The POD is simply the Singular Value Decomposition (SVD) of the

(space X time) data matrix X.

1,1 T1,M
X = : : =UXV*

TN TN,M

o Columns of U are spatial modes

e Columns of V' are temporal modes

e X is diagonal with descending o;

But the temporal modes are arbitrary and cannot be easily predicted

forward in time:
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The first POD mode has the highest energy and
contains the solar disk.

Please see accompanying video:

sun_remove_rotate.avi

(Cloud imagery provided by UCSD [2])
Average cloud velocity is found by Horn & Schunck Optical Flow ([4], [5])
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Fair-Weather Cumuli grow and then subside

e A cloud lifetime begins

with a growth phase, Please see accompanying video:
followed by a decay
phase.

e Prediction of a future

state requires knowing 09 16 2016.avi
where the cloud is in its T

lifetime.
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The Dynamic Mode Decomposition (DMD) is built on
the POD, but finds complex exponential temporal
modes [6].

A first-order difference eqn maps X to the state
at the next time step, Xs:

X = (space X time) Xo = AXy
r = AUSV™.
Ti,1°T1,M
X = where ULV * is the SVD of X;. Define:
|ZN,1 BN, M
T1,1 0 T1,M—1 A:=U AU = U* X,V L.
X, = . .
N 1.' . IN.M—l A is the projection of the transformation A onto the
- ’ (spatial) POD modes U of the data.
T1,2° T1,M
Xo — Since X can be truncated (along with U and V'), we may
2= construct a rank-r model of the N X N transformation
lzN2- TN M matrix:

A, = UrAU, = U} XV, 5, .
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DMD Discovers Underlying Exponential Time Dynamics
An eigendecomposition of A, exposes the exponential temporal modes:

i -1
Ap = WDW where the DMD mode weights are found from

Let A = diag(D). Then: the initial condition xq:
1
Q= [W1>"')WT]T: KthQ(A)' b:<I>+z0.

The DMD modes (in the original N-dimensional
space) are given by the columns of:

O =XV, 2 'W.
(or just ® = UW).
Xdmad is thus a sum of arbitrary (cloud-shaped)

spatial modes which evolve exponentially and
sinusoidally over time.

The reduced-order model X 4,4 is thus given by

Xama = b
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Some clouds are decaying and some are growing

Please see accompanying video:

If we do a single-mode DMD,
the resulting mode will be
either exponentially decaying
(w1 < 1) or growing

(w1 >1)

rotated.avi

Dynamic Mode Decomposition for Prediction

14/18



Single-Mode DMD for each Pixel Column of the
Rotated Image

e Uniform velocity, right to left e Compute (C x 3) DMD for each column
e Each pixel column has a known advection e Find X 4,,q for that column t. sec in the
time to sun future

Futures at t=177 s.

5 10 15 20 25 30 35 40 45 50
time, sec

Each column above is a prediction of conditions at the edge of the solar disk at the indicated time
into the future.
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Single-Mode DMD for each Pixel Column of the
Rotated Image

e Uniform velocity, right to left e Compute (C x 3) DMD for each column
e Each pixel column has a known advection e Find X g4,,4 for that column t. sec in the
time to sun future

Futures att=295 s

5 10 15 20 25 30 35 a0 45 50
time, sec

Each column above is a prediction of conditions at the edge of the solar disk at the indicated time
into the future.
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Conclusions and Improvements

Clouds evolve on time scales shorter than our prediction horizon.

For good predictions, we must account for cloud growth and decay.

Multi-mode DMD can make better predictions.

Modeling advecting vortices (instead of clouds) may allow prediction
beyond one cloud lifetime.

Thank you!
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