

Reduced-Order Methods for Prediction of Photo-Voltaic Generation Variability due to Fair-Weather Cumuli

Jeff Manning

Department of Electrical and Computer Engineering, University of Texas at Austin

Nov 21, 2018

AMS 99th Annual Meeting
Phoenix, January 7, 2019

Outline

How Cloud-Induced PV Variability Challenges the Distribution Network

Proper Orthogonal Decomposition

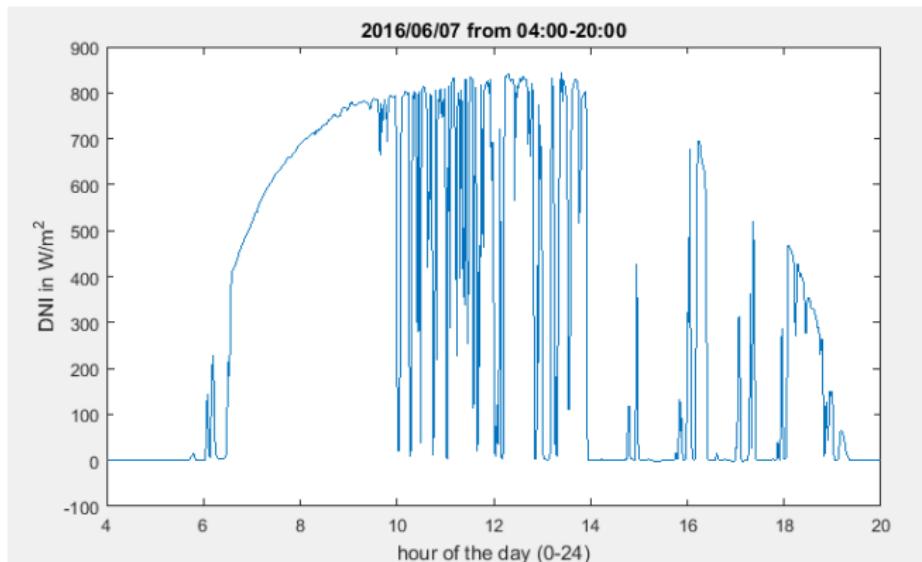
POD for Solar Disk Removal

Dynamic Mode Decomposition for Prediction

Conclusions and Improvements

Solar PV is Variable due to Clouds

Summertime PV can be very productive - up to $1kW \cdot m^{-2}$ at the surface of the earth. Clouds cause drastic variability, though, over periods as short as a few minutes [7].



On/off Insolation causes voltage swings in the neighboring distribution system area.

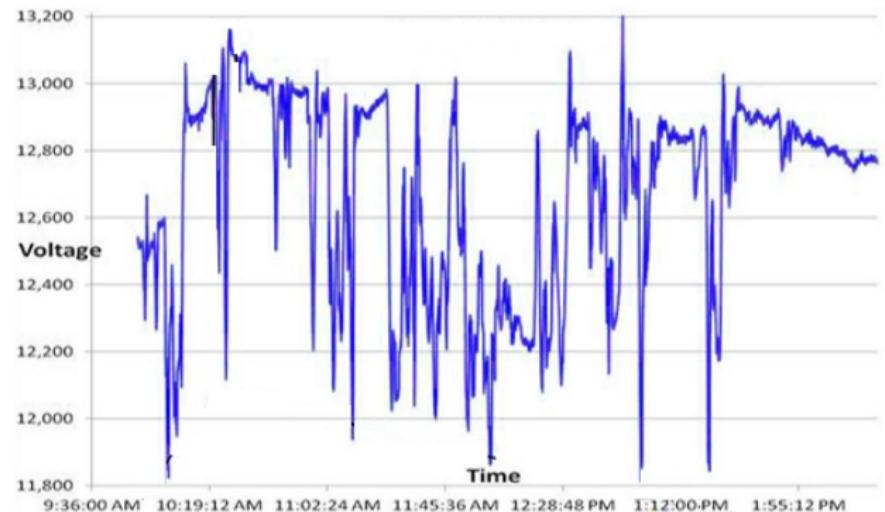
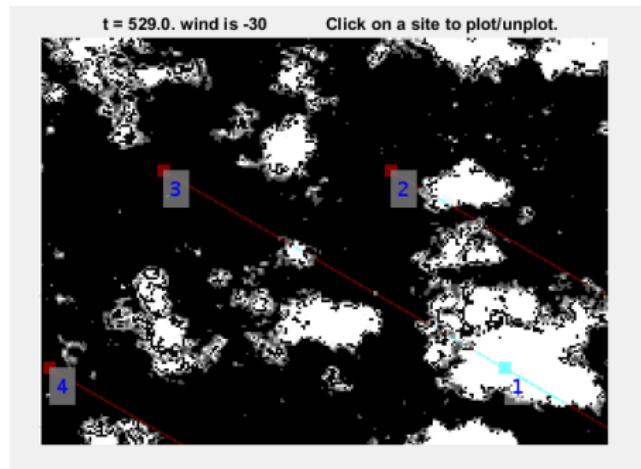


Figure: Illustration from [1].

Simple Advection Model

Clouds move with the wind. A crude estimate of downwind cloudiness can be made by simply translating the existing clouds downwind to $x + \Delta x$ at time $t + \Delta t$, where $\Delta x = u_x \Delta t$.



⇒ This may work well for stable clouds, but not for convective cumulus clouds, which are ever-changing.

Outline

How Cloud-Induced PV Variability Challenges the Distribution Network

Proper Orthogonal Decomposition

POD for Solar Disk Removal

Dynamic Mode Decomposition for Prediction

Conclusions and Improvements

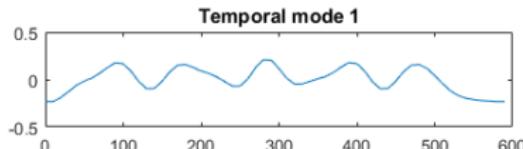
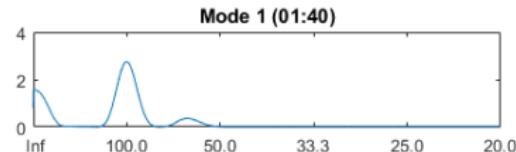
The Proper Orthogonal Decomposition (POD) has been used for many years to model fluid flows [3].

The POD is simply the Singular Value Decomposition (SVD) of the $(space \times time)$ data matrix X .

$$X = \begin{bmatrix} x_{1,1} & \cdots & x_{1,M} \\ \vdots & & \vdots \\ x_{N,1} & \cdots & x_{N,M} \end{bmatrix} = U \Sigma V^*$$

- Columns of U are spatial modes
- Columns of V are temporal modes
- Σ is diagonal with descending σ_i

But the temporal modes are arbitrary and cannot be easily predicted forward in time:



Outline

How Cloud-Induced PV Variability Challenges the Distribution Network

Proper Orthogonal Decomposition

POD for Solar Disk Removal

Dynamic Mode Decomposition for Prediction

Conclusions and Improvements

The first POD mode has the highest energy and contains the solar disk.

Please see accompanying video:

`sun_remove_rotate.avi`

(Cloud imagery provided by UCSD [2])
Average cloud velocity is found by Horn & Schunck Optical Flow ([4], [5])

Outline

How Cloud-Induced PV Variability Challenges the Distribution Network

Proper Orthogonal Decomposition

POD for Solar Disk Removal

Dynamic Mode Decomposition for Prediction

Conclusions and Improvements

Fair-Weather Cumuli grow and then subside

- A cloud lifetime begins with a growth phase, followed by a decay phase. Please see accompanying video:
- Prediction of a future state requires knowing where the cloud is in its lifetime. 09_16_2016.avi

The Dynamic Mode Decomposition (DMD) is built on the POD, but finds complex exponential temporal modes [6].

A first-order difference eqn maps X_1 to the state at the next time step, X_2 :

$\mathbf{X} = (\text{space} \times \text{time})$

$$\mathbf{X} = \begin{bmatrix} x_{1,1} \cdots x_{1,M} \\ \vdots & \vdots \\ x_{N,1} \cdots x_{N,M} \end{bmatrix}$$

$$\mathbf{X}_1 = \begin{bmatrix} x_{1,1} \cdots x_{1,M-1} \\ \vdots & \vdots \\ x_{N,1} \cdots x_{N,M-1} \end{bmatrix}$$

$$\mathbf{X}_2 = \begin{bmatrix} x_{1,2} \cdots x_{1,M} \\ \vdots & \vdots \\ x_{N,2} \cdots x_{N,M} \end{bmatrix}$$

$$\begin{aligned} X_2 &= AX_1 \\ &= AU\Sigma V^*. \end{aligned}$$

where $U\Sigma V^*$ is the SVD of X_1 . Define:

$$\tilde{A} := U^*AU = U^*X_2V\Sigma^{-1}.$$

\tilde{A} is the projection of the transformation A onto the (spatial) POD modes U of the data.

Since Σ can be truncated (along with U and V), we may construct a rank- r model of the $N \times N$ transformation matrix:

$$\tilde{A}_r := U_r^*AU_r = U_r^*X_2V_r\Sigma_r^{-1}.$$

DMD Discovers Underlying Exponential Time Dynamics

An eigendecomposition of \tilde{A}_r exposes the exponential temporal modes:

$$\tilde{A}_r = W D W^{-1}$$

Let $\Lambda = \text{diag}(D)$. Then:

$$\Omega = [\omega_1, \dots, \omega_r]^T = \frac{1}{\Delta t} \log(\Lambda).$$

where the DMD mode weights are found from the initial condition x_0 :

$$b = \Phi^+ x_0.$$

The DMD modes (in the original N -dimensional space) are given by the columns of:

$$\Phi = X_2 V_r \Sigma_r^{-1} W.$$

(or just $\Phi = UW$).

The reduced-order model X_{dmd} is thus given by

X_{dmd} is thus a sum of arbitrary (cloud-shaped) spatial modes which evolve exponentially and sinusoidally over time.

$$X_{dmd} = \Phi e^{\Omega t} b$$

Some clouds are decaying and some are growing

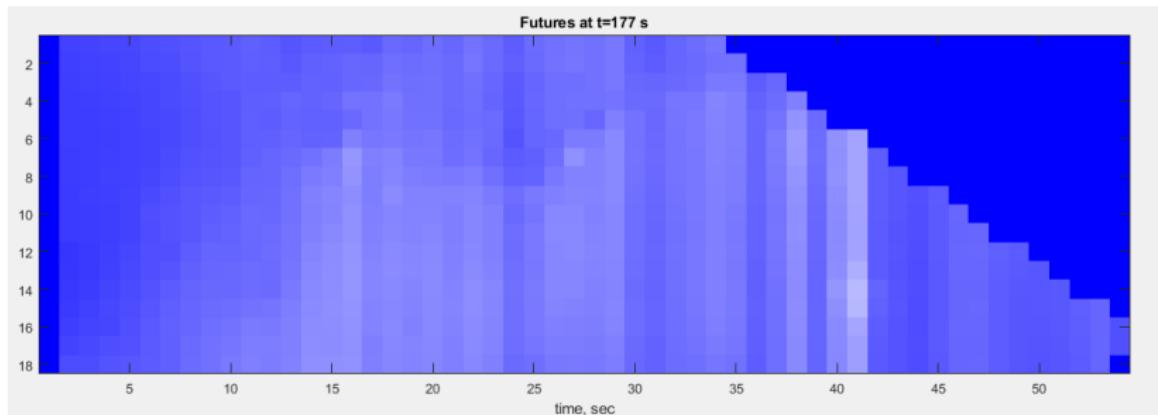
Please see accompanying video:

If we do a single-mode DMD,
the resulting mode will be
either exponentially decaying
($\omega_1 < 1$) or growing
($\omega_1 \geq 1$)

rotated.avi

Single-Mode DMD for each Pixel Column of the Rotated Image

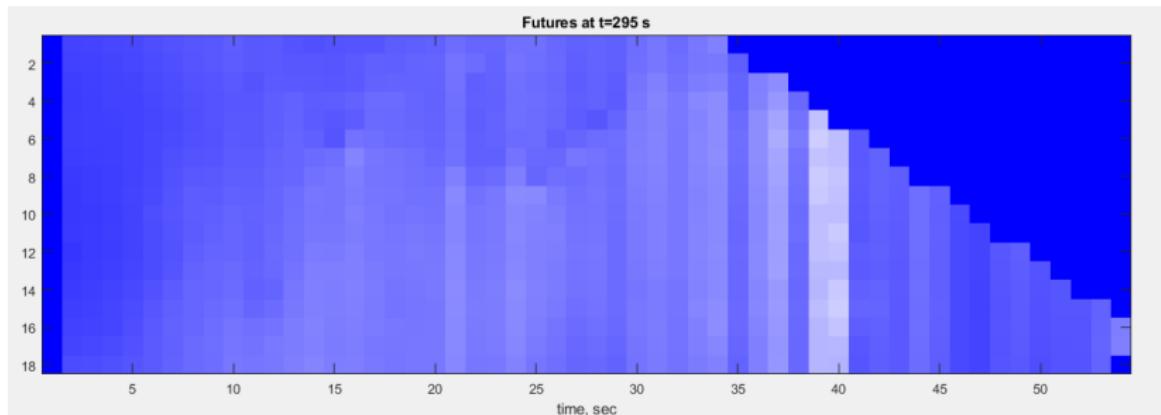
- Uniform velocity, right to left
- Each pixel column has a known advection time to sun
- Compute $(C \times 3)$ DMD for each column
- Find X_{dmd} for that column t_c sec in the future



Each column above is a prediction of conditions at the edge of the solar disk at the indicated time into the future.

Single-Mode DMD for each Pixel Column of the Rotated Image

- Uniform velocity, right to left
- Each pixel column has a known advection time to sun
- Compute $(C \times 3)$ DMD for each column
- Find X_{dmd} for that column t_c sec in the future



Each column above is a prediction of conditions at the edge of the solar disk at the indicated time into the future.

Outline

How Cloud-Induced PV Variability Challenges the Distribution Network

Proper Orthogonal Decomposition

POD for Solar Disk Removal

Dynamic Mode Decomposition for Prediction

Conclusions and Improvements

Conclusions and Improvements

- Clouds evolve on time scales shorter than our prediction horizon.
- For good predictions, we must account for cloud growth and decay.
- Multi-mode DMD can make better predictions.
- Modeling advecting *vortices* (instead of clouds) may allow prediction beyond one cloud lifetime.

Thank you!

- [1] Y. Chen.
Realtime volt/var optimization scheme for distribution systems with pv integration.
Available:<https://www.slideshare.net/OPALRTTECHNOLOGIES/2017-atlanta-regional-user-seminar-realtime-voltvar-optimization-scheme-for-distributi>
- [2] C. Coimbra and M. Li.
"university of california at san diego whole-sky cloud imagery", 2015.
- [3] P. Holmes, J. L. Lumley, and G. Berkooz.
Turbulence, Coherent Structures, Dynamical Systems and Symmetry.
Cambridge University Press, Cambridge, UK, 1996.
ISBN: 0-521-63419-9.
- [4] B. Horn and B. Schunck.
Determining optical flow.
AI Memos, pages pp. 185–203, August 1981.
<http://dspace.mit.edu/handle/1721.1/6337>.
- [5] M. Kharbat.
Horn-schunck optical flow method.
Technical report, Mathworks File Exchange, 2009.
<https://www.mathworks.com/matlabcentral/fileexchange/22756-horn-schunck-optical-flow-method>.
- [6] N. Kutz, S. Brunton, B. Brunton, and J. Proctor.
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 2016.
ISBN: 9781611974492.
- [7] U. of Texas Pan-American Solar Research Lab.
Daily plots and raw data files, 2016.
Available:http://www.nrel.gov/midc/utpa_srl.