The Navy's Next-Generation NEPTUNE Modeling System

James Doyle ${ }^{1}$, Alex Reinecke ${ }^{1}$, Kevin Viner ${ }^{1}$, David Flagg ${ }^{1}$, Sasa Gabersek ${ }^{1}$, Sarah King ${ }^{1}$, Matus Martini², John Michalakes ${ }^{3}$, David Ryglicki¹, Frank Giraldo ${ }^{4}$

[^0]3 UCAR, Boulder, CO
4 Naval Postgraduate School, Monterey, CA

- Future Exascale Computational Challenges
- Systems will have $\geq 10^{6}$ processors; Accelerators (e.g., GPUs)
- Current dynamical cores will be deficient

- Current Navy NWP Systems

- NAVGEM Global (32 km); COAMPS ${ }^{\circledR}$ Regional (1-15 km), ~100 areas

- Why Invest in a Next-Generation System?
- Unify (global-regional) Navy Earth System Prediction Capability (ESPC)
- Goal of $<5 \mathrm{~km}$ global and $<1 \mathrm{~km}$ regional NWP by ~ 2025
- Need an accurate \& flexible dynamical core \& exploit future parallelism
- NEPTUNE [Spectral Element core NUMA] Can Meet These Needs
- Numerical solution is represented by a local polynomial expansion
- Flexible numerics with high-order and mesh refinement options
- Small communication footprint implies excellent computational scaling
- Excellent potential for dense floating point computations (accelerators)

Scalability

NOAA NGGPS Intercomparison

Scaling to 3 Million MPI Ranks

NUMA Strong Scaling on Mira (Argonne) IBM Blue Genie/Q for 3-km resolution using 3 million MPI ranks

Number of Compute

- NEPTUNE has higher scaling efficiency compared to other dynamical cores
- NEPTUNE projects better onto next generation Exascale computing
- NUMA dynamics scales very well on standard CPUs and GPUs

Optimization

- NEPTUNE kernels tested with various optimization methods on: i) Intel Xenon, ii) NVIDIA GPU, iii) Cavium ARM
- Results are very promising (4-5X speedups!).

NOAA Dynamical Core Idealized Intercomparison Tests

NOAA HIWPP Intercomparison of Next-Gen. Dynamical Cores

Baroclinic Wave Grid Imprinting Southern Hemisphere (Day 9, 120 km)

Splitting Supercell ($\Delta x=500 \mathrm{~m}$)
Hydrometeors (shaded)

- NOAA HIWPP dynamical core tests (baroclinic wave, super cell, mtn waves)
- NEPTUNE compares favorably to other leading cores for all idealized tests
-NEPTUNE has smallest grid imprinting of any core (4th order numerics)

March 2018 Forecast Statistics

- Initialize NEPTUNE with GFS > 00 UTC 1-31 March 2018 > 120-h forecasts
- GFS physics using Interoperable Physics Driver (IPDv4) (no tuning)
- NEPTUNE: $13-\mathrm{km}$ grid spacing
- GFS: $13-\mathrm{km}$ grid spacing
- NAVGEM: 32-km grid spacing (soon to be 19 km)
- ECMWF analysis for statistics

500-hPa NH GHT Anomaly Correlation $850-\mathrm{hPa}$ NH Temperature RMS

- NEPTUNE at 13-km resolution has comparable verification statistics as GFS
- NEPTUNE at 32-km resolution has slightly better verification statistics than NAVGEM
- NEPTUNE (with GFS physics) is sensitive to the horizontal resolution (see Alex Reinecke, 4.2 at $3: 15 \mathrm{pm}$)

Precipitation Forecasts

NEPTUNE 48-72-h Accumulated Precipitation (mm)

72-h 700-Pa T (March 2018)

 NEPTUNE-GFS \triangle T_700hPa $2018030200 \quad \tau=72 \mathrm{~h}$

Superstorm Sandy (2012)
($\Delta x-5 \mathrm{~km}$)

- NEPTUNE/NUMA has numerous grid options (cubed sphere, icosahedral...)
-Next steps: Incorporate the Common Community Physics Package (CCPP) software

Data Assimilation Increments

- Cycle in NAVGEM / NAVDASAR data assimilation (no ensemble DA) and NEPTUNE
- Comparison of DA increments from single cycle
- NEPTUNE tends to have larger increments, but in broadly similar patterns to NAVGEM
-Linking NEPTUNE with NAVDAS-AR (4DVar) for cycling tests with physics

Arctic Grid: 925-hPa Temperature

Initialization: 2015110700

East Asia Grid: 700-hPa Zonal Winds

Initialization: 2015110700
-NEPTUNE unified the global and limited area capabilities

- Designed to meet Navy's limited-area unclass \& class domain requirements
- Used to efficiently test high-resolution physics without needing to run a highresolution version of the global configuration
- Mesh refinement: Increase elements where high resolution is needed
- Application of adaptive mesh refinement to global and regional NWP
- High resolution and computationally feasible
-Resolve relevant features/follow battle groups for Navy applications

Frank Giraldo and NUMA Team (NPS) coupling, post processing, diagnostics, verification...

Summary

-NEPTUNE is designed to meet future computational \& scientific needs for the Navy ESPC

- Ideal for next-generation computers: highly scalable; amendable to accelerators
- Accurate higher-order numerics; flexible grids (mesh refinement); deep atmosphere equations
- Global \& regional coupled air-ocean-land-ice capabilities in a single unified system
$>$ Real data NWP and idealized evaluations continue to show promising results
>Optimization and refactoring of NEPTUNE code show significant speedups (4-5X) are possible

Future Plans

$>$ Focus NEPTUNE development on unique Navy mission needs \& requirements (PBL, coupled...)
$>$ Partner with the community on major challenges ahead
-Physics, gray zone, dynamics, multi-scale DA (JEDI), exascale computing, coupling (ESMF)
> Next Steps: Real data NWP tests, PBL \& coupling, JEDI DA, cycling DA tests, high-altitude option
$>$ Targeted for operations ~2025
NRL has exciting opportunities in next-generation modeling and computational science.
Please contact James Doyle (james.doyle@nrlmry.navy.mil)

LABORATORY

March 2018 Forecast Statistics

500-hPa NH GHT Anomaly Correlation $850-\mathrm{hPa}$ NH Temperature RMS

- NEPTUNE (with GFS cold starts) has improved verification statistics relative to NAVGEM
- NEPTUNE has better NH 500-hPa ACs and 850-hPa temperature RMSEs
- NEPTUNE has better winds at 850-hPa, 500-hPa, and 200-hPa
- NEPTUNE has a larger tropical temperature bias in mid-troposphere

[^0]: 1 U.S. Naval Research Laboratory, Monterey, CA, 2 DEVINE Consulting, Monterey, CA

