Seasonal Prediction of North Atlantic Accumulated Cyclone Energy and Major Hurricane Activity

Kyle Davis and Xubin Zeng University of Arizona Presented at the AMS 99th Annual Meeting Session - Tropical Cyclones: Subseasonal to Interannual Variability and Prediction

Many Ways to Measure a Hurricane Season

(Davis and Zeng 2018, Weather and Forecasting)

For the North Atlantic basin:

	Named Storms	Hurricanes	Major Hurricanes*	ACE**
2015:	11	4	2	63
2013:	14	2	0	36
2005:	28	15	7	250
2004:	15	9	6	227
1981–2010 Avg:	11.9	6.4	2.7	106

A

*Hereafter MH **Accumulated cyclone energy

New Statistical Models to Predict MH & ACE

Model Basics

- Extension of previous work
- Statistical models
- Three variables
- Forecasts issued early June (data through May)
- Data from 1968-2017

Our Goal

To produce models:

- Better than climatology
- Comparable/better than other centers

Sea Surface Temperatures

Showing statistically significant (p < 0.05) correlations

0.55

0.60

60°E

MEI and Tropical Cyclone Activity

ZPWS = Zonal Pseudo-Wind Stress = magnitude of wind * x component of wind

30°W

0.3

30°W

0.3

0.4

0.5

0.4

0.5

How Well Do They Predict?

Three Cases of Real-Time Prediction

<u>1967-1958</u>

Metric	MAE	MAE 5-Year
MH	1.4	1.8
ACE	39	46

|--|

Organization	MH	ACE
CSU May	2	100
CSU August	3	135
TSR May	3	98
TSR August	3	116
NOAA May	3	106.5
NOAA August	3.5	-
UA June	6	181
Obs	6	226

<u>2018</u>

Organization	MH	ACE
CSU May	2	90
CSU August	1	64
TSR May	1	43
TSR August	1	58
NOAA May	2.5	96.6
NOAA August	1	69
UA June	2	96
Obs	2	129

Summary and Conclusions

- We developed new statistical models to predict both MH and ACE for the North Atlantic in early June
- Three predictors:
 - SST
 - MEI conditioned on AMO
 - ZPWS
- In hindcast mode, results are comparable and often better than 3 other centers
- Results show skill when predicting real-time

