
Using Standard Tools to Package and Distribute Scientific Software C and Fortran
Libraries: a Demonstration with the General Purpose Timing Library (GPTL)

Edward Hartnett 1,2

1 CIRES, University of Colorado, Boulder, CO 80309, USA
2 NOAA/ESRL/GSD, Boulder, CO 80305, USA

How It Was Done
1. Created autotools build for C

library, alongside existing
build system.

2. Created new repository,
copied all Fortran code and
tests.

3. Created autotools build for
Fortran library.

4. Once both new builds are
demonstrated to work,
deleted old build system and
removed Fortran code and
tests from original
repository.

5. Created combined
distribution, containing both
C and Fortran libraries.

Results
● Build is more portable.
● Build system is less

complex.
● C, Fortran, and a combined

C/Fortran library have been
released on GitHub.

Build
System

Files Lines of
Code

Legacy 30 4807

Autotools
(combined
C/Fortran)

14 593

C Library Build

src/Makefile.am
libgptl_la_CPPFLAGS = -I$(top_srcdir)/include

This is our output. The GPTL library.
lib_LTLIBRARIES = libgptl.la

These are the source files.
libgptl_la_SOURCES = f_wrappers.c getoverhead.c gptl.c gptl_papi.c \
hashstats.c memstats.c memusage.c pmpi.c print_rusage.c pr_summary.c \
util.c

test/Makefile.am
Find include directory.
AM_CPPFLAGS = -I$(top_srcdir)/include

Link to GPTL library.
AM_LDFLAGS = ${top_builddir}/src/libgptl.la

These programs will be built but not installed.
noinst_PROGRAMS = gran_overhead printwhileon

Test programs that will be built for all configurations.
check_PROGRAMS = tst_simple global
TESTS = tst_simple global

Build these tests if PAPI is present.
if HAVE_PAPI
check_PROGRAMS += avail testpapi
TESTS += avail testpapi
noinst_PROGRAMS += papiomptest knownflopcount
endif

Build these tests if MPI is present.
if HAVE_MPI
check_PROGRAMS += summary
TESTS += run_par_test.sh
if ENABLE_PMPI
check_PROGRAMS += pmpi
TESTS += run_par_pmpi_test.sh
endif
endif

Build these if the user selected --enable-autoprofile-tests during
configure.
if TEST_AUTOPROFILE
check_PROGRAMS += cygprofile cygprofilesubs
TESTS += cygprofile cygprofilesubs
endif

Build these if the user selected --enable-nestedomp during
configure.
if ENABLE_NESTEDOMP
check_PROGRAMS += nestedomp
TESTS += nestedomp
endif

Test output to be deleted.
CLEANFILES = timing.*

Makefile.am
This directory stores libtool macros, put there by aclocal.
ACLOCAL_AMFLAGS = -I m4

These files get added to the distribution.
EXTRA_DIST = COPYING README

This is the list of subdirs for which Makefiles will be constructed
and run.
SUBDIRS = include src test bin

include/Makefile.am
include_HEADERS = gptl.h
noinst_HEADERS = private.h

bin/Makefile.am
Install script in $(bindir) and distribute it.
dist_bin_SCRIPTS = parsegptlout.pl

configure.ac
Specify minimum autoconf version.
AC_PREREQ([2.59])

Initialize autoconf.
AC_INIT([GPTL], [5.6.0], [james.rosinski@noaa.gov])

Find out about the host we're building on.
AC_CANONICAL_HOST

Find out about the target we're building for.
AC_CANONICAL_TARGET

Initialize automake.
AM_INIT_AUTOMAKE([foreign subdir-objects])

Keep libtool macros in an m4 directory.
AC_CONFIG_MACRO_DIR([m4])

Set up libtool.
LT_PREREQ([2.4])
LT_INIT()

The config.h file will be created when configure script is run.
AC_CONFIG_HEADERS([config.h])

Find the C compiler.
AC_PROG_CC()

These ensure proper handling of const and inline.
AC_C_CONST
AC_C_INLINE

Set HAVE_NANOTIME on x86 systems only.
AC_MSG_CHECKING([whether x86 nanotime is available])
AS_CASE([$host], [*86*], [have_nanotime=yes], [have_nanotime=no])
if test "x$have_nanotime" = xyes; then
 AC_DEFINE([HAVE_NANOTIME], [1], [x86 nanotime capability is present])
fi
AC_MSG_RESULT($have_nanotime)

Does the user want to turn on nested OMP?
AC_MSG_CHECKING([whether nested OMP is to be enabled])
AC_ARG_ENABLE([nestedomp], [AS_HELP_STRING([--enable-nestedomp],
 [build with nested OMP capability])])
test "x$enable_nestedomp" = xyes || enable_nestedomp=no
AM_CONDITIONAL(ENABLE_NESTEDOMP, [test x$enable_nestedomp = xyes])
AC_MSG_RESULT($enable_nestedomp)

Does the user want to turn on PMPI?
AC_MSG_CHECKING([whether PMPI is to be enabled])
AC_ARG_ENABLE([pmpi], [AS_HELP_STRING([--enable-pmpi],
 [build with PMPI capability])])
test "x$enable_pmpi" = xyes || enable_pmpi=no
AM_CONDITIONAL(ENABLE_PMPI, [test x$enable_pmpi = xyes])
if test $enable_pmpi = yes; then
 AC_DEFINE([ENABLE_PMPI], [1], [enable pmpi])
fi
AC_MSG_RESULT($enable_pmpi)
AC_DEFINE([MPI_STATUS_SIZE_IN_INTS], [5], [size of status in MPI])

Does the user want to test autoprofiling?
AC_MSG_CHECKING([whether autoprofile testing is to be enabled])
AC_ARG_ENABLE([autoprofile-testing], [AS_HELP_STRING([--enable-autoprofile-testing],
 [test autoprofileing])])
test "x$enable_autoprofile_testing" = xyes || enable_autoprofile_testing=no
AM_CONDITIONAL(TEST_AUTOPROFILE, [test $enable_autoprofile_testing = yes])
AC_MSG_RESULT($enable_autoprofile_testing)

Does the user want to use double underscores for fortran wrappers?
AC_MSG_CHECKING([whether double underscore for Fortran wrappers should be enabled])
AC_ARG_ENABLE([double-underscore], [AS_HELP_STRING([--enable-double-underscore],
 [use double underscore for Fortran wrappers])])
test "x$enable_double_underscore" = xyes || enable_double_underscore=no
AC_MSG_RESULT($enable_pmpi)
if test $enable_double_underscore = yes; then
 AC_DEFINE([FORTRANDOUBLEUNDERSCORE], [1], [use double underscore for Fortran])
else
 AC_DEFINE([FORTRANUNDERSCORE], [1], [use single underscore for Fortran wrappers])
fi

Check for papi library.
AC_CHECK_LIB([papi], [PAPI_library_init])
AC_MSG_CHECKING([whether system can support PAPI])
if test "x$ac_cv_lib_papi_PAPI_library_init" = xyes; then
 # If we have PAPI library, check /proc/sys/kernel/perf_event_paranoid
 # to see if we have permissions.
 if test -f /proc/sys/kernel/perf_event_paranoid; then
 if test `cat /proc/sys/kernel/perf_event_paranoid` != 1; then
 AC_MSG_ERROR([PAPI found, but /proc/sys/kernel/perf_event_paranoid != 1
 try sudo sh -c 'echo 1 >/proc/sys/kernel/perf_event_paranoid'])
 fi
 fi
 AC_DEFINE([HAVE_PAPI], [1], [PAPI library is present and usable])
 have_papi=yes
fi
AC_MSG_RESULT($have_papi)
AM_CONDITIONAL([HAVE_PAPI], [test "x$have_papi" = xyes])

Check for rt library.
AC_CHECK_LIB([rt], [clock_gettime])

Check for existence of procfs, the proc file system.
AC_CHECK_FILE([/proc],
 [AC_DEFINE([HAVE_SLASHPROC], [1], [some comment])])

Check for pthread lirbary.
AC_CHECK_LIB([pthread], [pthread_mutex_init])
if test "x$ac_cv_lib_pthread_pthread_mutex_init" = xyes; then
 AC_DEFINE([PTHREADS], [1], [pthreads library is present])
fi

We need the math library for some tests.
AC_CHECK_LIB([m], [floor], [],
 [AC_MSG_ERROR([Can't find or link to the math library.])])

Check for function backtrace_symbols.
AC_CHECK_FUNC([backtrace_symbols],
 [AC_DEFINE([HAVE_BACKTRACE], [1], [backtrace_symbols function is present])])

Check for times.
AC_CHECK_FUNC([times],
 [AC_DEFINE([HAVE_TIMES], [1], [vfprint function is available])])

Check for gettimeofday.
AC_CHECK_FUNC([gettimeofday],
 [AC_DEFINE([HAVE_GETTIMEOFDAY], [1], [gettimeofday function is available])])

Do we have MPI?
AC_CHECK_FUNC([MPI_Init], [have_mpi=yes])
AM_CONDITIONAL([HAVE_MPI], [test "x$have_mpi" = xyes])

Do we have function MPI_Comm_f2c?
AC_CHECK_FUNC([MPI_Comm_f2c], [have_mpi_comm_f2c=yes])
if test "x$have_mpi_comm_f2c" = xyes; then
 AC_DEFINE([HAVE_COMM_F2C], [1], [MPI_Comm_f2c is present])
fi

Check for function iargc, which may be part of MPI.
AC_CHECK_FUNC([iargc],
 [AC_DEFINE([HAVE_IARGCGETARG], [1], [backtrace_symbols function present])])

Check the size of a void pointer.
AC_CHECK_SIZEOF([void *])
if test "x$ac_cv_sizeof_void_p" = x8; then
 AC_DEFINE([BIT64], [1], [void pointer is 8 bytes])
fi

This is a list of files to be built.
AC_CONFIG_FILES([Makefile
 include/Makefile
 test/Makefile
 src/Makefile
 bin/Makefile

])

Build the files listed above.
AC_OUTPUT()

Initialize Autotools

Setup Config.h
Send all C pre-processor macros to
special include file config.h, which
must be included by all code in the
package.

Find C Compiler

Check for x86
The GPTL has a special feature
that is only available on x86
systems.

Configure Options
The user can pass options to
configure, like --enable-pmpi. This
causes pre-processor macro
ENABLE_PMPI to be set in
config.h, also automake conditional
ENABLE_PMPI is set to true,
which will be used when the
Makefiles are built.

Find Libraries and
Functions
Check whether some libraries
and functions can be found on
the build system. In some
cases (like the math library)
configure will error out if it’s not
found. In other cases,
pre-processor macros will be
set in config.h, so that the C
code can be written to handle
the presence/absence of the
library.

Configure Outputs
After learning about the build system, the
configure script will use the results, and
automake, to build the five Makefiles that
are needed.

Main Makefile
SUBDIRS are processed in order.

Include Files
Headers are used for the build,
and installed in the include
directory, unless the noinst_
prefix is used.

Scripts
Scripts are installed in the bin
directory.

Build the Library
Builds static/shared libraries.
Note that all library source files
are listed.

Set Up Testing

Build, Don’t Install

Tests
These tests will be built and run
for all builds.

Optional Tests
These tests will be built and run
for some builds, depending on
the values of automake
conditionals like HAVE_MPI.

Clean Up
These files are created during
testing, and removed by the
clean target.

Fortran Library Build
configure.ac

Specify minimum autoconf version.
AC_PREREQ([2.59])

Initialize autoconf.
AC_INIT([GPTL-fortran], [5.6.0], [james.rosinski@noaa.gov])

Keep libtool macros in an m4 directory.
AC_CONFIG_MACRO_DIR([m4])

Find out about the host we're building on.
AC_CANONICAL_HOST

Find out about the target we're building for.
AC_CANONICAL_TARGET

Initialize automake.
AM_INIT_AUTOMAKE([foreign subdir-objects])

Set up libtool.
LT_PREREQ([2.4])
LT_INIT()

Find the Fortran compiler.
AC_PROG_FC()

Set HAVE_NANOTIME on x86 systems only.
AC_MSG_CHECKING([whether x86 nanotime is available])
AS_CASE([$host], [*86*], [have_nanotime=yes], [have_nanotime=no])
if test "x$have_nanotime" = xyes; then
 AC_DEFINE([HAVE_NANOTIME], [1], [x86 nanotime capability is present])
fi
AC_MSG_RESULT($have_nanotime)

Check for papi library.
AC_CHECK_LIB([papi], [PAPI_library_init], [], [have_papi=no])
test "x$have_papi" = xno || have_papi=yes

When built as part of the combined C/Fortran library distribution,
the fortran library needs to be built with
--enable-package-build. This tells the fortran library where to find
the C library.
AC_ARG_ENABLE([package-build],
 [AS_HELP_STRING([--enable-package-build],
 [Set internally for package builds, should not be used by user.])])
test "x$enable_package_build" = xyes || enable_package_build=no
AM_CONDITIONAL([BUILD_PACKAGE], [test "x$enable_package_build" = xyes])

Find the GPTL C library, unless this is a combined C/Fortran library
build.
if test $enable_package_build = no; then
 AC_CHECK_LIB([gptl], [GPTLinitialize], [],
 [AC_MSG_ERROR([Can't find or link to the GPTL C library.])])
fi

Do we have MPI?
AC_CHECK_FUNC([MPI_Init],
 [AC_DEFINE([HAVE_MPI], [1], [MPI is present])])
AM_CONDITIONAL([HAVE_MPI], [test "x$ac_cv_func_MPI_Init" = xyes])

See if the C GPTL was built with PAPI.
AC_CHECK_FUNC([gptl_papilibraryinit], [c_has_papi=yes], [c_has_papi=no])
if test $have_papi = yes -a $c_has_papi = no; then
 AC_MSG_CHECKING([PAPI library is present, but was not built. Turning PAPI off.])
 have_papi=no
fi

Determine the have_papi settings for this build.
AC_MSG_CHECKING([whether PAPI library is present and should be used])
AM_CONDITIONAL([HAVE_PAPI], [test "x$have_papi" = xyes])
if test "x$have_papi" = xyes; then
 AC_DEFINE([HAVE_PAPI], [1], [PAPI library is present])
fi
AC_MSG_RESULT($have_papi)

Check for function backtrace_symbols.
AC_CHECK_FUNC([backtrace_symbols], [have_backtrace=yes], [have_backtrace=no])
if test $have_backtrace = yes; then
 AC_DEFINE([HAVE_BACKTRACE], [1], [backtrace_symbols function is present])
fi
AM_CONDITIONAL([HAVE_BACKTRACE], [test "x$have_backtrace" = xyes])

Make sure this file is copied to build directories for tests to
work.
AC_CONFIG_LINKS([test/gptlnl:test/gptlnl])

This is a list of files to be built.
AC_CONFIG_FILES([Makefile
 include/Makefile
 src/Makefile
 test/Makefile

])

Build the files listed above.
AC_OUTPUT()

src/Makefile.am
libgptlf_la_FCFLAGS = -I$(top_srcdir)/include

if HAVE_PAPI
libgptlf_la_FCFLAGS += -DHAVE_PAPI
endif

if HAVE_MPI
libgptlf_la_FCFLAGS += -DHAVE_MPI
endif

This is our output. The GPTL-fortran library.
lib_LTLIBRARIES = libgptlf.la
libgptlf_la_SOURCES = gptlf.F90 printmpistatussize.F90 \
process_namelist.F90

Install these in the include directory.
include_HEADERS = gptl.mod

test/Makefile.am
Find include directory and src directory (for .mod file).
AM_CPPFLAGS = -I$(top_srcdir)/include -I$(top_srcdir)/src

Link to GPTL fortran library.
AM_LDFLAGS = ${top_builddir}/src/libgptlf.la

For combined C/Fortran builds, find the C library.
if BUILD_PACKAGE
LDADD = ${top_builddir}/../GPTL/src/libgptl.la
endif

MODFILE = ${top_builddir}/src/gptl.mod

Test programs that will be built for all configurations.
check_PROGRAMS = testbasics errtest handle outoforder \
overhead testbacktrace nlreader
TESTS = testbasics errtest handle outoforder testbacktrace nlreader

Test dependencies needed.
testbasics_SOURCES = testbasics.F90 ${MODFILE}
errtest_SOURCES = errtest.F90 ${MODFILE}
handle_SOURCES = handle.F90 ${MODFILE}
nlreader_SOURCES = nlreader.F90 ${MODFILE}
outoforder_SOURCES = outoforder.F90 ${MODFILE}

Extra test if we have backtrace.
if HAVE_BACKTRACE
check_PROGRAMS += testbacktrace
TESTS += testbacktrace
testbacktrace_SOURCES = testbacktrace.F90 ${MODFILE}
endif

Test PAPI functionality if libpapi was found.
if HAVE_PAPI
AM_CPPFLAGS += -DHAVE_PAPI
check_PROGRAMS += testinit testpapi
TESTS += testinit testpapi
testpapi_SOURCES = testpapi.F90 ${MODFILE}
testinit_SOURCES = testinit.F90 ${MODFILE}
endif

Test output to be deleted.
CLEANFILES = timing.*

This file is required for the nlreader test.
EXTRA_DIST = gptlnl

Makefile.am
This directory stores libtool macros, put there by aclocal.
ACLOCAL_AMFLAGS = -I m4

These files get added to the distribution.
EXTRA_DIST = COPYING

This is the list of subdirs for which Makefiles will be
constructed and run.
SUBDIRS = src test include

include/Makefile.am
include_HEADERS = gptl.inc

Initialize Autotools

Build Subdirs
Run make in subdirectories
src, test, and include.

Find Fortran
Compiler

Check for x86

Find GPTL C
Library
There is special handling for
combined builds.

Find Library

Check C Library
Check for various features in the C
library. Set pre-processor macros
for the Fortran code.

Configure Outputs
These four makefiles will be built by
configure.

Install gptl.inc

Set FCFLAGS

Build Library

Install gptl.mod

Set Flags
Set up the compile flags for
the test code.

Build Tests

Optional Tests
These Fortran tests may be
built, depending on what
was learned during
configure.

Distribute Test
File

Clean Up

Combined C/Fortran Build
configure.ac

AC_PREREQ([2.69])
AC_INIT([GPTL-all], [1.0.0], [edward.hartnett@noaa.gov])

Find out about the host we're building on.
AC_CANONICAL_HOST

Find out about the target we're building for.
AC_CANONICAL_TARGET

Initialize automake.
AM_INIT_AUTOMAKE([foreign subdir-objects])

Keep macros in an m4 directory.
AC_CONFIG_MACRO_DIR([m4])

Set up libtool.
LT_PREREQ([2.4])
LT_INIT()

Build the GPTL C library.
AC_CONFIG_SUBDIRS([GPTL])

Add this arg for the fortran build, to tell it to
3 use the C library we just built.
ac_configure_args="$ac_configure_args --enable-package-build"

Build the GPTL Fortran library.
AC_CONFIG_SUBDIRS([GPTL-fortran])

AC_CONFIG_FILES([Makefile])

AC_OUTPUT

Makefile.am
This directory stores libtool macros, put there by aclocal.
ACLOCAL_AMFLAGS = -I m4

SUBDIRS = GPTL GPTL-fortranw Build
Subdirectories

Initialize
Autotools

Build C Library

Build Fortran Library

Configure Output
Cause configure to build the Makefile
which will launch the build of the C
and Fortran GPTL libraries.

Summary
● GPTL C/Fortran libraries

have been converted to an
autoconf/automake/libtool
based build system.

● Use of these standard tools
is simple and improves
portability.

● Build system complexity is
substantially reduced.

● This poster presents the
annotated build system for
the C, Fortran, and
combined C/Fortran
projects.

Extended Abstract: https://ams.confex.com/ams/2019Annual/mediafile/Manuscript/Paper350095/AutotoolGPTL.pdf

