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Background and Motivation

Tb and OLR Data from 15°N–15°S

v Convectively coupled Atmospheric equatorial waves are strongly linked to the dynamics observed in the Earth’s atmosphere.
These waves may help us better understand atmospheric convection, precipitation characteristics, and energy redistribution.

v From the standpoint of climate change and variability, understanding tropical wave dynamics and interactions may help us
better project cloud and rainfall distribution both in the present and possible future climate scenarios.

v GCMs (e.g., CMIP5 models) struggle to produce realistic tropical wave activity e.g., the MJO (Hung et al. 2013, J. Climate).

v Geostationary Satellites: Gridded infrared (IR) channel brightness temperature (IJ) dataset (GridSat-B1; Knapp 2008, BAMS)
→Data procured from 1982–2016 (35 years) at 0.07-degree latitude equal-angle grid at a 3-hour temporal resolution
→Re-gridded to 0.98-degree grid and 24-hour temporal resolution to speed-up calculations and for easy comparison with the OLR dataset

v Polar Orbiting Satellites: Interpolated OLR dataset (Liebmann and Smith 1996, BAMS) by NOAA from 1979–2016 (38 years)
with a temporal resolution of 1-day, a horizontal resolution of 2.5°×2.5°

Stay tuned for…
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v Remove the seasonal cycle in both datasets using five pairs of harmonics to the annual cycle (Roundy 2017, QJRMS).
Wheeler and Kaladis (1999, JAS) Frequency–Wavenumber Power Spectrum 

v Compute the symmetric and antisymmetric parts of the datasets:
LMNOO =

LQRSO(TU°VWX°) Y LQRSO(TU°ZWX°)
[

LQMNO =
LQRSO(TU°VWX°) \ LQRSO(TU°ZWX°)

[
v 200-day segmentation time window repeated every 100-day. Detrend and apply a Cosine bell each time window.
v Apply a discrete Fourier transform (DFT) for each 200-day time window iteratively to obtain ]]I(LMNOO) and ]]I(LQMNO).
v Calculate symmetric and antisymmetric power by taking the complex conjugate.
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Fig 2: Linear trends in the log^ spectral power (×10\a) from
1979–2016 for the OLR dataset and 1982–2016 for the IJ
dataset. The black dots indicate trends that are statistically
significant (p-value<0.1).

Fig 1: The frequency-wavenumber power spectrum diagram
normalized by the smoothened background spectrum similar
to the technique developed by WK99.
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Fig. 3: Interannual variations in the regional (see
Fig. 1 for domain) mean power (red for
antisymmetric part, and blue for symmetric part).
OLR (left column), and IJ (right column) datasets.
The slope, and the p-value (p-val) of the linear trend
lines are shown in the box embedded in each panel.

Fig. 4: A Monte Carlo analysis carried out by
randomly rearranging the data points for each
interannual variability curve 1,000 times in Fig. 3
without repetition in order to quantify uncertainties
in the slope (units: ×10\b logc d efgh\i) of the
linear trend line shown in Fig. 3.

Fig. 5: Trends in OLR variance calculated using the spectrally filtered
OLR anomaly for different wave types from 1979–2016. The black dots
indicate trends that are statistically significant (p-value<0.1).

Fig. 6: The mean number, and duration of events corresponding to the
different wave types from 1979–2016 using daily OLR anomalies.
Significant (p<0.1) increasing (black dot) and decreasing (white cross)
trends shown after applying a linear regression analysis (p-value<0.1).

Results (Part 2: Trends in Tropical Waves and Confidence)

v Good agreement in the mean power spectrum and trends between the jk and OLR datasets:
→ Significant decrease in l from ~0–0.2 cpd, and an increase in l from ~0.2–0.5 cpd.
→ Over 30% of the power spectrum diagram shows significant trends (p-value<0.1)

v Increase in power at high n (e.g., KWs, MRG, and TD-type) coincides with a significant increase in the occurrence of high
frequency disturbances, accompanied by a decrease the mean duration of an event.

v Decrease in power at low n (e.g., MJO and ERW) is associated with spatially non-homogeneous trends in the mean duration
and number of the events. These changes appear to trend towards producing spatially homogeneous MJO characteristics.

v Trends in spatial variance and power agree well with each other i.e., increase in power corresponds to an increase in variance.

v Diagnosing changes in the characteristics of tropical waves (e.g., o, amplitude, and persistence), and identifying mechanisms
resulting in the observed change in the d spectrum.

v Understanding the linkage between tropical waves and precipitation, and using projected changes in tropical wave activity to
estimate precipitation change in possible future climate scenarios.

v El Niño–Southern Oscillation variability does not control the trends observed in the d spectrum (see extended abstract), but
understanding the combination of ENSO and global warming on regional and global precipitation warrants further study.
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