#### ARAM Paper #1.1

# **Urban Air Mobility**

## **Emerging Opportunities for the Weather Community**



### **Matthias Steiner**

National Center for Atmospheric Research msteiner@ucar.edu



19<sup>th</sup> Aviation, Range, and Aerospace Meteorology Conference 7 January 2019 in Phoenix, Arizona



### Vision of the 60s . . .

https://www.youtube.com/watch?v=tTq6Tofmo7E Courtesy of Warner Brothers

### Today's vision . . .

https://www.uber.com/us/en/elevate/

**Courtesy of Uber Air** 



## **Urban Air Mobility (UAM)**

### Why such a buzz now?

- Emerging technologies
  - battery energy storage capacity
  - distributed electric propulsion & rotor design
  - vertical takeoff & landing
  - composite materials & manufacturing
  - automation & eventually autonomy
- Market analyses show huge potential

### **Expected benefits**

- Increased mobility & reduced commuting time
- Reduced congestion & pollution - low emissions & noise

### Use cases

- Scheduled & on-demand aerial ride services
  - fixed shuttle routes & point-to-point
- Air ambulance
- Air cargo & local delivery
- Personal flying vehicles



Predicted UAM market (2035)





### Lots of challenges . . .



... including weather (although not explicitly spelled out)



## **Weather Sensitivities**

### Safety, efficiency & reliability

- Inclement weather can affect all of them
- Hazards include wind & turbulence, temperature, ceiling & visibility, precipitation & lighting, icing, etc.

### Infrastructure

• Climatic regimes guide infrastructure needs, aircraft design, & fleet mixture to maximize reliability

### **Operations**

- Weather guidance needed for safety & comfort of passengers (both during transfer & aerial ride), performance of aerial vehicle & impact on operations
- Need to understand operationally critical thresholds

### Particular challenges

- Added complexity in strong gradient environments like complex terrain, land/sea contrasts, extreme heat, etc.
- Urban environments with localized flow around buildings
- Visual versus instrument meteorological conditions











### **Planning – Climatologies**

• Heat Index (1998 – 2017 KDFW)



#### 95<sup>th</sup> Percentile

#### Frequency of heat index exceeding 91 F



### **Execution – Actual weather**

 Vortex shedding off tall buildings in urban setting



## **Weather Guidance**

### **Observations**

- METAR & others
- Radar (MRMS, CIWS)
- Satellite (VIS, IR, WV)
- Lightning
- Radiosonde
- Aircraft (ACARS, PIREPs, in-situ EDR)

### **Analyses**

- RTMA
- Aviation weather hazard diagnosis products

### Forecasts

- TAF
- HRRR
- Aviation weather hazard forecast products





## **Opportunities**

### **Observation**

- Onboard weather sensing
  connectivity to share data in real time
- Enhanced urban networks to capture micro scales around vertiports

### Prediction

- Building resolving modeling to resolve airflow in cityscape
  - multi-scale modeling, coupling mesoscale with large-eddy simulations (LES)
  - improved urban boundary layer representation & diurnal cycle
  - faster processing using GPU & other methods
- Ensembles to capture prediction uncertainty

### **Translation**

- Understanding weather impacts on operations
   impacts along flight path & avoidance routing
- Modeling of power consumption, emission & noise pollution

### Change

• Ever evolving conditions with climatic changes









### **Urban boundary layer challenges**

- Representation of urban landscapebuildings, surfaces, vegetation, etc.
- Representation of relevant processes
  - sun angle, cloud coverage, differences in local heating, wind & turbulence, moisture, pollution, etc.
  - processes across multiple scales



## **Points to Remember**

### **UAM is happening**

• Timeline may be optimistic, but industry is moving fast & progress is visible

### **UAM is sensitive to weather**

• Sensitivity increases with decreasing size of aircraft



• Particular weather challenges in urban environments

### **UAM provides opportunities for weather community**

- Collection of additional meteorological data
  - sensors on aerial vehicles can provide real-time weather data aloft
  - benefits from enhanced ground-based urban observing infrastructure
  - validation of prediction capabilities
- More observations yield improved understanding & prediction capabilities
  - advances in meso- & micro-scale toward building-resolving modeling
  - need to understand minimum complexity required for given weather situation
- Creation of tailored, location & time-specific weather guidance
  - translation of weather to operational impacts & constraints
  - weather impacts along flight path & avoidance routing