Impact of CYGNSS Data Assimilation on Tropical Cyclone Forecasts in August 2017

Michael J. Mueller¹, A. C. Kren², S. M. Leidner³, B. Annane², and L. Cucurull⁴

¹Cooperative Institute for Research in the Environmental Sciences, and NOAA/OAR/ESRL/Global Systems Division, Boulder, Colorado

² Cooperative Institute for Marine and Atmospheric Studies, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, FL

³ Atmospheric and Environmental Research a Verisk Analytics company, Norman, OK

⁴ NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, FL

99th American Meteorological Society Annual Meeting 9 January 2019

Research goals

1. Conduct preliminary attempt to assimilate CYGNSS data in global data assimilation and forecasting system

2. Assess the output of a month-long Observing System Experiment

- Assimilation statistics
- Impact on tropical cyclone track and maximum wind speed forecasts

Research goals

1. Conduct preliminary attempt to assimilate CYGNSS data in global data assimilation and forecasting system

2. Assess the output of a month-long Observing System Experiment

- Assimilation statistics
- Impact on tropical cyclone track and maximum wind speed forecasts

Why use CYGNSS to observe tropical cyclones?

<u>Cy</u>clone <u>G</u>lobal <u>N</u>avigation <u>Satellite</u> <u>System</u>

- Derives surface wind speed over oceans using reflected GPS signals signal penetrates clouds and precipitation
- Offers access to poorly observed near-TC environment

Hurricane Michael – Mexico Beach, FL Courtesy: NY Times

Hurricane Harvey – Port Arthur, TX Courtesy: US Air National Guard

CYGNSS Impact Experiment

- Month-long global experiment 1-31 August 2017
 - 1-14 August spin-up; 15-31 August for impact study
 - week-long forecast at 00Z during impact study
 - Analysis cycling 4x per day
- GDAS/GFS experimental system (version FY17q3)
 - Global Data Assimilation System (T254)
 - Hybrid 4DEnVar Gridpoint Statistical Interpolation (GSI) 6 hr assimilation window
 - Global Forecast System (T670)
- Two tests: CTL and CYG
- Best track databases: HURDAT-2 (Atl/E. Pac.) and JTWC (W. Pac.)
- 9 tropical cyclones (Gert, Harvey, Irma, Kenneth, Lidia, Banyan, Hato, Pakhar, Sanyu)
 - 38 TC forecast initializations

How to prepare CYGNSS data for assimilation?

Data Thinning

- A LOT of CYGNSS data in close proximity and want to avoid overfitting to one observation type, thus data thinning
- Ideal to thin through GSI, but initial test acted unexpectedly
- Preprocess the data: 100km specular point thinning

GSI Data Type Processing

- No data processing subroutine specifically for CYGNSS
- Use subroutine for a type of ship wind speed data assimilated at 20-m (type 283 "spd")

Observation Errors

• CYGNSS gross error parameters modelled after those of ASCAT (allows o-b of 7-10 m s⁻¹)

Young Seas Limited Fetch near TC Fully Developed Seas away from TC

r= larger of 111km or 3x radius of maximum surface wind

 FDS inside radius and YSLF outside radius "turned off" through qc mark = 10

Young Seas Limited Fetch near TC Fully Developed Seas away from TC

r= larger of 111km or 3x radius of maximum surface wind

 FDS inside radius and YSLF outside radius "turned off" through qc mark = 10

Young Seas Limited Fetch near TC Fully Developed Seas away from TC

r= larger of 111km or 3x radius of maximum surface wind

 FDS inside radius and YSLF outside radius "turned off" through qc mark = 10

Young Seas Limited Fetch near TC Fully Developed Seas away from TC

r= larger of 111km or 3x radius of maximum surface wind

 FDS inside radius and YSLF outside radius "turned off" through qc mark = 10

Young Seas Limited Fetch near TC Fully Developed Seas away from TC

r= larger of 111km or 3x radius of maximum surface wind

 FDS inside radius and YSLF outside radius "turned off" through qc mark = 10

CYGNSS Assimilation Statistics

CYGNSS Assimilation Statistics

- CYGNSS observations 6K
 10K per cycle
- Rejection rate below 2% for all cycles

- Bias greatly reduced during assim
- Perhaps too much overfitting?

 RMS reduced from 1.8-2.0 m s⁻¹ to 1.2-1.5m s⁻¹ during assim

CYGNSS Impact on Tropical Cyclone Forecasts

Global
Harvey

Global Impacts on Tropical Cyclones (15-31 August 2017)

- Minimal impact on averaged wind speed errors at all lead times (+/- 1 kt)
- Small improvements at 48-72 hr, only significant at 66 hr (NOTE: 29 forecasts)
- Small degradations otherwise, only significant at 30 hr (NOTE: 35 forecasts)

Global Impacts on Tropical Cyclones (15-31 August 2017)

- Minimal impact on averaged track errors first 108 hr
- Improved track errors after 108 hr
- Significant improvement only at 168 hr (NOTE: only 8 forecasts)

- Minimal impact on averaged wind speed errors at all lead times (+/- 1 kt)
- Small improvements at 48-72 hr, only significant at 66 hr (NOTE: 29 forecasts)
- Small degradations otherwise, only significant at 30 hr (NOTE: 35 forecasts)

Hurricane Harvey (track & duration)

Hurricane Harvey (track & wind errors)

Hurricane Harvey Track Maps

<u>24 AUG</u>

- CYG forecast on 24 AUG slightly closer to Best Tracks on approach to SE Texas
- Both show stall and loop in track

<u>25 AUG</u>

- Both forecasts much better approaching coastline
- Both loop to the southwest
- Major improvement in CYG track after storm reemerges into Gulf of Mexico

25 August 2017 00z

Hurricane Harvey Forecasts

Hurricane Harvey Forecasts

Conclusions and Next Steps

- Successful month-long experiment assimilating CYGNSS data into global modeling system
 - Rejection rate low (<2% for all cycles)
 - Bias (O-A) reduces to very small number at analysis
- Overall globally-averaged impact on TCs neutral
- Hurricane Harvey track notably improved, intensity neutral impact

Next Steps

- Need new subroutine to handle CYGNSS data in GSI (assimilating at 20-m not ideal)
- User-provided error parameters may need updating

Acknowledgements

- Co-Authors Andrew Kren, S. Mark Leidner, Bachir Annane, and Lidia Cucurull
- Quantitative Observing System Assessment Program (QOSAP)
- NOAA's *Theia* supercomputer
- NCEP's GDAS/GFS

Thank You!

Questions?

michael.mueller@noaa.gov