35th Conference on Environmental Information Processing Technologies, January 6 - 10

INTRODUCTION

ECONOMIC IMPORTANCE OF BIRDS AND INSECTS

- 169,856 strikes were reported either as happened in the US or by US registered aircraft between 1990 and 2015
- 95.8% of strikes were birds
- Wildlife strike cost was estimated at \$229 million USD in 2015

CHALLENGES OF USING RADAR TO **DETECT BIRD/INSECT ECHOES**

- No current algorithm on NEXRAD for separating bird and insect echoes
- Birds and insects produce similar radar echoes
- Hydrometeor classification algorithm only defines a broad biological class
- Many studies of birds and insects are based on physical observation of few radar variables
- Radar variables are sensitive to position, aspect and range of target

GOAL

The aim is to create a fuzzy logic algorithm for detecting birds and insects using the NEXRAD network

NEXRAD mosaic from 3rd October

FEATURES OF BIRDS AND INSECTS

Divelo	
BIRDS	Inse
Birds are larger, faster and m	nore active fliers that
Birds migrate during the warm season in the great plains • Spring (late Feb - early June) • Fall (late Aug - November)	Insects migrate c peri
 Birds dominate nocturnal clear air echoes NOAA's Environmental Technology Lab routinely flags low level profiler data collected at night during migration season as contaminated (Martin, 2003) 	 Insects dominate mair echoes Kropfli (1986) ded reflectivity was du seeds and particul

- 1.Migration period September 2017
- 2.Radar KTLX (WSR-88D)
- 3.Elevation
- Lowest 2 sweeps $(0.3^{\circ} 0.5^{\circ})$ 4.Time of day
- Day 14 21 UTC (9 16 CDT) Night 2-9 UTC (21 – 4 CDT)

DATA ANALYSIS

- 5.Range and time intervals
- from radar
- intervals
- 6.Selection of clear air days Mesonet data (Norman Station) 22 days

Classifying bird and insect echoes at S band

Precious Jatau^{1,2} and Dr. Valery Melnikov^{2,3}

¹Advanced Radar Research Center, University of Oklahoma, Norman, OK, U.S.A ²Cooperative Institute of Mesoscale Meteorological Studies, Norman, OK, U.S.A ³National Severe Storms Laboratory, Norman, OK, U.S.A.

TEXTURE

$$\Delta Z_{a,b} = \frac{1}{N-1} \sum_{i=-1}^{1} \sum_{j=-1}^{1} |z_{a,b-} z_{a+i,b+j}|$$

DATA PROCESSING ALGORITHM

- For radial at 20°, 10 20 km 09:00 09:30 UTC (30 mins) Calculate mean (median) of variable (texture) along the 20° radial between 10 – 20 km
- 2. Accumulate all mean variables (median texture) from step 1 for all PPI's between 09:00 – 09:30 UTC
- 3. Mean (median) of all mean variables (median textures) in step 2 (MM variable)
- 4. Repeat for all azimuths, range and time intervals

Distribution of Differential Phase φ_{DP}

Variables that show good separation between day and night

7 parameters had the best separation between day and night echoes Z, σ_V , Z_{DR} , φ_{DP} , ρ_{HV} , ΔV and $\Delta \sigma_V$

FUZZY LOGIC ALGORITHM

CLASSES

where $\hat{f}(y)$ is the probability density function x_k is the kth observation of variable x n is the total number of data points

Birds and insects

MEMBERSHIP FUNCTIONS

Membership functions $P^{(i)}(v_i)$ are gotten by normalizing $\hat{f}(y)$ so that the maximum is 1

A UH-60 Black Hawk after collision with a common crane . From Patterson (2016)

2010. From birdcast (2012)

n insects during the same

nost day time clear

uced that clear air e to insects, lates

• 10 – 100 km (10 km intervals)

• Analyzed data in 30 minute

DATA QUALITY CONTROL

- Cells with no measurement or low SNR are excluded
- $\rho_{HV} > 0.8$ is excluded (Park et al, 2008)
- [-1,1] m/s is excluded

Variables that show poor separation between day and night

- σ is the Bandwidth given by 1.06 SD $n^{-\frac{1}{5}}$ (Silverman, 1986)
 - SD is the standard deviation of x

functions $\hat{f}(y)$

$$W_l = \frac{1}{A_l} \sum_{j=1}^{N}$$

$$Q_{i} = \frac{\sum_{j=1}^{7} W_{ij} F_{j}}{\sum_{j=1}^{7} |W_{ij}|^{2}}$$

 Insect case provided by USDA was identified as insect dominated with up 87.87% of classified echoes labelled as insects

Bird migration case was classified as bird dominated with up to 82.23% of classified echoes labelled as birds

• Algorithm identifies birds as the cause of observed reflectivity rings

• Future work include further validation using more known cases, wind estimation by tracking insect movement and generalizing the algorithm to other KTLX WSR-88D radars

