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Outline
• Estimation of interchannel error correlation for hyperspectral infrared 

sounders (e.g., AIRS, IASI,CrIS)
• Statistical consistency diagnostics (Desroziers et al., 2005).
• Used by Bormann et al. (2010), Stewart et al. (2013), Weston et al. (2014)
• Environment Canada (Heilliette and Garand, 2015)

• A simple 1D model based on a complex observation operator
• True error statistics are known
• Convergence of an iterative tuning approach
• Impact of under- and over- estimated background error
• Can we recover the true observation error covariances?

• Conclusions
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Statistical estimation
• Data assimilation blends information from a background state xb (e.g., a short-

term forecast) to that from observations, y taking into account their relative 
errors

• Background state:                                 Background error covariance: 

• Observations:            Observation error covariance:

• Best linear unbiased estimate, the analysis xa , is

with                                         ,the gain matrix and H, a linear observation operator 
(e.g., the Jacobian of a radiance transfer model)

• The assimilation needs B and R to correctly weigh these two sources of 
information
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Statistical consistency
• Desroziers et al. (2005): what should we obtain if there were a perfect 

agreement between the estimated and a priori error statistics
• Observation departures:                        , 

• The blue color indicates that they are deduced from the innovations d but not 
directly measured.

• Difficulty is to disentangle the observation and background error from the 
innovations

• Additional information is needed (Talagrand, 1999, 2003)
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An iterative approach to estimate the error 
statistics
• Consistency diagnostic is a necessary but not sufficient condition for 

the background and observation error covariances to be the true one
• Iterative method to solve two matrix equations

• These can be obtained by introducing these estimates in the 
assimilation to obtain an updated analysis.

• Approach used in Gauthier et al. (MWR 2018) was to devise a 1D 
assimilation for which the true error statistics are known.
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The 1D experiments
• Observation operator

• Used for the assimilation of infrared radiances from hyperspectral sounders (e.g., 
AIRS, IASI)

• Radiative transfer (RTTOV) has been linearized around a real background state (T, ln 
q, ps , Ts) on 80 levels up to 0.1 hPa

• The observation operator H is therefore linear

• Background error covariances (B)
• Used for the climatological component (3D-Var) of the operational EnVar assimilation 

system of Environment Canada.

• Assume Rtrue and Btrue based on what is used in the operational system
• The true innovation covariances D are known
• The background error covariances are assumed to be known and well calibrated
• Only tune the observation error covariances R to evaluate the convergence and if the 

true value is recovered 6.



Spectral range
Group Index Channel No. cm-1 μm Main 

sensitivity

1-a 5-15 232-310 716-739 14.0-13.5 T,Ts,CO2

1-b 16-34 333-1382 746-1292 13.4-7.7 Ts,T,H2O,O3

2 35-61 1424-1852 1316-1604 7.6-6.2 H2O,T

3-a 62-70 1865-1911 2182-2224 4.6-4.5 T,Ts, N2O

3-b 71-85 2112-2142 2391-2420 4.2-4.1 Ts,T,CO2

Table 1 Channel groups for AIRS
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Jacobian with respect to temperature dH/dT
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The “true” observation error correlations

9.



Correlations associated with HHT
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Correlations of HBtrueHT
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Tuning both R and HBHT

• If both R and (HBHT) are corrected, then after one iteration

which leads to D1 = Dtrue and HK1 = HK0 , the information content 
remains the same.
• Experiments in which HBHT = a HBtrueHT , a >1 (<1), B is over (under) 

estimated
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Rt diagonal
B = a Bt R0 = Id
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a = 1

Tuning both R and HBHT

Underestimated

Overestimated

Perfect fit to the innovation variance



Convergence when HBHT is kept constant
• Solving iteratively the matrix equation:
• Measuring convergence:

• Distance between iterates:                                Distance to the true solution:

• Assuming                                to be fixed, the solution should converge to 
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• Remarks:
• Since for any two symmetric matrices

it is necessary to filter each iterate (                                 )
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Experiment with HBHT = HBtrueHT
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Estimated error variance

Convergence



Experiment with HBHT = 0.5  HBtrueHT
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Estimated error variance

Convergence



Experiment with HBHT = 2.0  HBtrueHT
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Estimated error variance

Convergence



Estimated observation error correlations after
a) One iteration, b)10 iterations
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Using R* as a diagnostic

• Under the assumption that HBHT correct, the observation error 
covariance can be obtained for all observations used in a data 
assimilation system

• Estimates were computed from results of the Environment Canada DA system
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20.

Observation error variance prescribed (black), estimated with 
one iteration , and what we should have at convergence 
(dashed)



21.

Observation error variance prescribed (black), estimated with 
one iteration , and what we should have at convergence 
(dashed)



Conclusion-1

• Statistical consistency provides a necessary condition for the error statistics 
to be  correct but this is not sufficient to be able to estimate observation 
error

• An iterative method based on this principle is not converging to the exact 
solution

• It does not even produce symmetric matrices

• Additional assumption: the background error statistics to be correct
• The innovations would provide the exact solution R*
• Computing this solution for all observations used in the assimilation system of 

Environment Canada indicate that this assumption leads to unphysical observation 
statistics (negative variance)

• Background error statistics need to be revisited
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Conclusion-2

• Current estimate with EnKF has shown that the background error 
variance exceed that of the innovation

• What our result show is that the observation error variances would provide a 
more detailed diagnostic to test if the background error statistics are 
consistent

• Observation error can be estimated on a physical basis
(Chun et al., 2015)

• Caveats
• Error statistics are Gaussian, unbiased and the observation operator is linear

• Reference: Gauthier, P., P. Du, S. Heilliette and L. Garand, 2018:
Mon.Wea.Rev, 146, 3227-3239.
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