Sarah Diouf ${ }^{1,2}$ ；Wassila M．Thiaw ${ }^{1}$ ；Endalkachew Bekele ${ }^{1,2}$
${ }^{1}$ NOAA／NWS／NCEP Climate Prediction Center，${ }^{2}$ University Corporation for Atmospheric Research

Introduction

Over the past several years，there has been a growing demand for operational forecasts on the sub－seasonal time scale ranging from one week to one month，as many decisions in socio－economic sectors fall into this time range．
The NOAA＇s Climate Prediction Center（CPC）is developing a set of forecasting tools to address the gap in sub－seasonal forecasting．It has developed week 1，week 2 and week $3-4$ probabilistic forecasts for：

precipitation

2 m air temperature
heat wave days．
These sub－seasonal forecasts cover the area encompassing the Caribbean，Central America and Mexico

 Week 1 heat wave day foreca
$\left(T_{m a x} \geq 90^{\text {th }}\right.$ percentile）

Methodology
－Precipitation and 2 m air temperature forecasts

Week 3－4 calibrated 2－category precipitation anomaly（top left）and temperature anomaly（top right）probabilistic forecasts，valid from 31 July to 13 August 2017 （IC：15－16 July 2017）and week 1 heat wave day exceedance of the $90^{\text {th }}$ percentile（bottom right），valid from 31 July to 6 August 2017 （IC： 30 July 2017）．

Area Under the ROC Curve
Assesses the discriminative
ability of the model
$0 \leq A U C \leq 1$
$A U C=1$ perfect forecast

－Heat wave day forecasts

$\frac{\mathrm{I}}{\mathrm{I}}$ Observation（1980－2010）： Real－time forecasts（2017－2018）： Grided CPC maximum temperature NCEP GEFS and NCEP CFSV2
In this study，a heat wave is defined as a period of：
－at least 3 consecutive days with daily NOAA＇s Heat Index $\geq 38^{\circ} \mathrm{C}$ ， or
at least 3 consecutive days with daily $T_{\max } \geq 90^{\text {th }}$ percentile in the 30 －year climatological record from 1981 to 2010
$p($ heat wave $)=\frac{\text { number of ensemble members favourable for heat wave }}{}$ $p($ heat wave $)=\frac{\text { total number of ensemble members }}{}$

objective evaluation of the forecast quality．
 Verification
 Verification metrics are

AUC Area Under the ROC Curve | Assesses the discriminative |
| :---: |
| ability of the model |
| $0 \leq A U C \leq 1$ |
| $A U C=1$ perfect forecast |

[^0]

HSS $=1$ perfect forecast

Verification Results

－Heat wave days（ $N O A A^{\prime}$ s Heat Index $\geq 38^{\circ} \mathrm{C}$ ）

July－August－September 2015－2018
July－August－September 2015－2018
－Heat wave days（ $T_{\max } \geq 90^{\text {th }}$ percentile）

2m air temperature

Week 1

HSS | Week 2 |
| :---: |
| HSS |

Conclusion

Verification Results
－Precipitation

$\text { Week } 1$ HSS	$\text { Week } 2$ HSS	Week 3－4 HSS
		电
$\begin{gathered} - \text { raw } \\ \rightarrow-\text { calibrated } \end{gathered}$	$\stackrel{\stackrel{r}{\mathrm{~m}}}{\sim}$	$\begin{aligned} & \because \text { raw } \\ & \rightarrow \text { calibrated } \end{aligned}$
$\begin{aligned} & \text { HSS }_{\text {raw }}=0.33 \\ & H S S_{\text {calibrated }}=0.32 \end{aligned}$	$\begin{aligned} & \text { HSS }_{\text {raw }}=0.24 \\ & \text { HSS }_{\text {calibrated }}=0.17 \end{aligned}$	$\begin{aligned} & H S S_{\text {raw }}=0.12 \\ & H S S_{\text {calibrated }}=0.03 \end{aligned}$

$H S S_{\text {calibrated }}=0.53 \quad$ HSS $_{\text {calibrated }} \quad$ HSS calibrated $=0.29$
－Verification reveals skillful forecasts at time ranges of week 1 and week 2.
－Results suggest that the NCEP models perform reasonably well in depicting heat wave events in the Caribbean，Central America and Mexico．
－The heat wave day forecasts，when made available in real time， can help mitigate the impact of heat on human health in vulnerable populations．
－Efforts will be done in performing bias corrected forecasts to help increase the skills，at all time scales．

[^0]: Week 1 and Week 2 initial conditions Week 3－4 initial conditions

