GOES-17 Post-Launch Testing Summary and Results

Elizabeth Kline
GOES-R Product Quality Lead
GOES-R Product Readiness and Operations (PRO) Team
Jon Fulbright, Randy Race, Dave Pogorzala, Matt Seybold

AMS Annual Meeting 2019
15th Annual Symposium on New Generation Operational Environmental Satellite Systems
Session 9A: Calibration and Validation I
Phoenix, AZ

January 10, 2019
Outline

• GOES-R Series Spacecraft Refresher
• GOES-17 Timeline and Milestones
• Post-Launch Test Period
• Data Distribution and Science Product Maturity
• ABI LHP Anomaly Status
• Current Maturity and PLPT Status of L1b Data Products
• GOES-T and U Status
THE GOES-R SERIES SPACECRAFT

Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS)

Space Environment In Situ Suite (SEISS)

Magnetometer

Solar Ultraviolet Imager (SUVI)

Geostationary Lightning Mapper (GLM)

Advanced Baseline Imager (ABI)
GOES-S/17 Mission Timeline & Milestones

*All Dates Subject to Change

Launch & Orbit Raising

- GOES-S launch was a resounding success
- GOES-17 reached geostationary orbit at 89.5 deg W

Post-Launch Testing (PLT) - 180 Days

- LHP startup non-nominal, contingency planning begins
- ABI L1b & CMI declared Beta maturity

Operations – ≤ 5 years Storage & ≥ 8.4 years Ops

- Operations Handover to NOAA/OSPO
- Operations

Ongoing contingency planning for LHP anomaly

Operations

- PLPTs
- Operations

Operations – ≤ 5 years Storage & ≥ 8.4 years Ops

- Operations Handover to NOAA/OSPO
- Operations

Ongoing contingency planning for LHP anomaly

Operations

- PLPTs
- Operations

Outgas

- Instrument and Product Calibration, Validation, & Trending

Today: January 10, 2019

- Operational West Assignment
- ABI L1b & CMI declared Provisional maturity
Post-Launch Testing (PLT) and Product Tests (PLPTs)

- Post-launch testing is a 6 month testing window that involves all components of the satellite system:
 - Testing is done on the instruments, the guide, navigation and control systems, the communications systems, the ground system, and the spacecraft itself (PLTs)
 - The science products are also given an assessment by NOAA scientists through their own testing and monitoring (PLPTs)

- Lots of procedures and tests are run in non-nominal modes to ensure all aspects are working properly and tuned as fine as possible for the real on-orbit conditions of the satellite

- During PLT, data flows are limited to internal support (MOST), instrument vendors, and cal/val teams

- As the satellite transitions out of PLT and into Operations, most users won’t see data until Provisional maturity
First data from all instruments
What do the three Product Maturity Levels mean?

Beta: The product is made available to users to gain familiarity with data formats and parameters. The product has been minimally validated and may still contain significant errors and is not optimized for operational use.

Provisional: Product is ready for operational use but has documented known issues. Product analyses are sufficient to communicate product performance to users relative to expectations.

Full: Product is operational. All known product anomalies are resolved and/or documented and shared with the user community.
G17 Product Generation and Distribution

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Files being generated</th>
<th>Data Flows Enabled</th>
<th>Date in GRB (2018)</th>
<th>Data Publicly Accessible from CLASS?</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEISS L1b</td>
<td>All sensor L1b files</td>
<td>PDA, CLASS, GRB</td>
<td>August 13</td>
<td>Yes (MPS-HI) Others Jan-Mar</td>
</tr>
<tr>
<td>EXIS L1b</td>
<td>XRS and EUVS files</td>
<td></td>
<td>June 28</td>
<td>No</td>
</tr>
<tr>
<td>MAG L1b</td>
<td>Geomagnetic field strength files</td>
<td></td>
<td>August 9</td>
<td>No</td>
</tr>
<tr>
<td>ABI L1b</td>
<td>Radiances</td>
<td></td>
<td>August 28</td>
<td>Yes</td>
</tr>
<tr>
<td>SUVI L1b</td>
<td>Solar EUV imagery</td>
<td></td>
<td>August 22</td>
<td>No</td>
</tr>
<tr>
<td>GLM L2</td>
<td>Events, groups, flashes</td>
<td></td>
<td>October 3</td>
<td>Yes</td>
</tr>
<tr>
<td>ABI L2+</td>
<td>All product files</td>
<td></td>
<td>N/A</td>
<td>No</td>
</tr>
</tbody>
</table>

All GOES-R Series data are archived in CLASS
When Will G17 Data be Available to the Public?

All (near-term) dates subject to change!

<table>
<thead>
<tr>
<th>ABI L1b Product</th>
<th>Beta</th>
<th>Provisional</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiances</td>
<td>8/27/18</td>
<td>11/28/18</td>
<td>11/2019</td>
</tr>
<tr>
<td>GLM L2 Product</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lightning: Events, Groups, Flashes</td>
<td>10/2/18</td>
<td>12/20/18</td>
<td>12/2019</td>
</tr>
<tr>
<td>SEISS L1b Products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energetic Heavy Ions</td>
<td>8/10/18</td>
<td>3/14/19</td>
<td>02/2020</td>
</tr>
<tr>
<td>Magnetospheric e⁻/p⁺: Low Energy</td>
<td>8/10/18</td>
<td>3/27/19</td>
<td>02/2020</td>
</tr>
<tr>
<td>Magnetospheric e⁻/p⁺: High Energy</td>
<td>8/10/18</td>
<td>12/18/18</td>
<td>02/2020</td>
</tr>
<tr>
<td>Solar & Galactic Protons</td>
<td>8/10/18</td>
<td>1/16/19</td>
<td>02/2020</td>
</tr>
<tr>
<td>EXIS L1b Products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Flux: EUV</td>
<td>6/27/18</td>
<td>2/27/19</td>
<td>02/2020</td>
</tr>
<tr>
<td>Solar Flux: X-ray Irradiance</td>
<td>6/27/18</td>
<td>2/27/19</td>
<td>02/2020</td>
</tr>
<tr>
<td>SUVI L1b Product</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar EUV Imagery</td>
<td>8/21/18</td>
<td>4/3/19</td>
<td>02/2020</td>
</tr>
<tr>
<td>MAG L1b Product</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geomagnetic Field</td>
<td>8/8/18</td>
<td>1/24/19</td>
<td>02/2020</td>
</tr>
</tbody>
</table>

Validation Maturity Levels: Not Validated | Beta Maturity | Provisional Maturity | Full Maturity
When Will G17 Data be Available to the Public?

<table>
<thead>
<tr>
<th>ABI L2+ Products</th>
<th>Beta</th>
<th>Prov</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud and Moisture Imagery (CMI) and Sectorized CMI (KPP)</td>
<td>8/27/18</td>
<td>11/28/18</td>
<td>2019</td>
</tr>
<tr>
<td>Aerosol Detection (Smoke & Dust)</td>
<td>8/27/18</td>
<td>3/20/19</td>
<td>2020</td>
</tr>
<tr>
<td>Aerosol Optical Depth (AOD)</td>
<td>8/27/18</td>
<td>12/18/19</td>
<td>2020</td>
</tr>
<tr>
<td>Clear Sky Mask</td>
<td>8/27/18</td>
<td>6/19/19</td>
<td>2020</td>
</tr>
<tr>
<td>Cloud Optical Depth</td>
<td>8/27/18</td>
<td>9/25/19</td>
<td>2020</td>
</tr>
<tr>
<td>Cloud Particle Size Distribution</td>
<td>8/27/18</td>
<td>10/9/19</td>
<td>2020</td>
</tr>
<tr>
<td>Cloud Top Height</td>
<td>8/27/18</td>
<td>3/20/19</td>
<td>2020</td>
</tr>
<tr>
<td>Cloud Top Phase</td>
<td>8/27/18</td>
<td>7/17/19</td>
<td>2020</td>
</tr>
<tr>
<td>Cloud Top Pressure</td>
<td>8/27/18</td>
<td>3/20/19</td>
<td>2020</td>
</tr>
<tr>
<td>Cloud Top Temperature</td>
<td>8/27/18</td>
<td>3/20/19</td>
<td>2020</td>
</tr>
<tr>
<td>Derived Motion Winds</td>
<td>8/27/18</td>
<td>5/9/19</td>
<td>2020</td>
</tr>
<tr>
<td>Derived Stability Indices</td>
<td>8/27/18</td>
<td>11/27/19</td>
<td>2020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABI L2+ Products</th>
<th>Beta</th>
<th>Prov</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downward S/W Radiation: Surface</td>
<td>8/27/18</td>
<td>9/25/19</td>
<td>2020</td>
</tr>
<tr>
<td>Fire/Hot Spot Characterization</td>
<td>8/27/18</td>
<td>9/4/19</td>
<td>2020</td>
</tr>
<tr>
<td>Hurricane Intensity Estimation</td>
<td>8/27/18</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Land Surface Temperature</td>
<td>8/27/18</td>
<td>12/5/19</td>
<td>2020</td>
</tr>
<tr>
<td>Legacy Vertical Moisture Profile</td>
<td>8/27/18</td>
<td>11/27/19</td>
<td>2020</td>
</tr>
<tr>
<td>Legacy Vertical Temperature Profile</td>
<td>8/27/18</td>
<td>11/27/19</td>
<td>2020</td>
</tr>
<tr>
<td>Rainfall Rate/QPE</td>
<td>8/27/18</td>
<td>9/18/19</td>
<td>2020</td>
</tr>
<tr>
<td>Sea Surface Temperature</td>
<td>8/27/18</td>
<td>3/20/19</td>
<td>2020</td>
</tr>
<tr>
<td>Snow Cover</td>
<td>TBD*</td>
<td>TBD*</td>
<td>TBD*</td>
</tr>
<tr>
<td>Total Precipitable Water</td>
<td>8/27/18</td>
<td>11/27/19</td>
<td>2020</td>
</tr>
<tr>
<td>Volcanic Ash: Detection and Height</td>
<td>8/27/18</td>
<td>7/17/19</td>
<td>2020</td>
</tr>
</tbody>
</table>

Validation Maturity Levels:
- Not Validated
- Beta Maturity
- Provisional Maturity
- Full Maturity

* Snow Cover has a waiver. It is dependent upon a non-baseline Albedo Product which is in development.
GOES-17 ABI Performance

• Loop Heat Pipes on GOES-17 ABI not functioning properly
 – Loop Heat Pipes are not transferring expected thermal load to radiator
 – Results in loss of data from 7 infrared channels at warmest orbital conditions (before and after the vernal and autuminal equinoxes)
 • Water vapor (Ch 8, 9, 10), cloud top phase and ozone LWIR (Ch 11, 12), dirty and CO2 LWIR (Ch 15, 16)
 – Under worst case conditions, local emission and dark current noise cause the longer wavelength channels to saturate and become unusable for 3-6 hours overnight depending on channel

• Optimization techniques successful in recovering > 97% of planned ABI data
 – Operating IR detectors and cryocooler at higher set points
 – Reducing detector integration time and optimizing gain/bias settings
 – Performing semi-annual yaw flip to reduce solar load

• ABI recently experienced a software error that resulted in degraded imagery
 – Not due to ongoing loop heat pipe issue
 – Recent update to software that controls the ABI cryocooler system experienced a memory error
 – Cryocooler operation was restored; imagery degradation was temporary and no longer expected
 – ABI engineers testing permanent software fix, to be implemented in January

https://www.goes-r.gov/users/transitionToOperations17.html
Post-Launch Product Tests: ABI

System Performance Characterization:
- Restricted Zone Performance (Solar Avoidance), A/D Converter, RVS, Band-to-band, SRF & OOB performance, etc.

VNIR Calibration:
- SD Calibration, Lunar Observations, Desert Site Trending, Satellite Intercomparisons.

IR Calibration:
- BB Trending (ICT), Satellite Intercomparisons, CRTM.

INR Calibration:

VNIR Noise Stability
Pre- and post-drift
Post-Drift
Due to the LHP anomaly, Program and STAR are working towards implementing
- FPM temperature based DQFs
- Band swapping based on the DQF
 - For example, implementing logic to swap B13 for B14 in the Fires algorithm
 - Enterprise Algorithms: updated science and dynamic band swapping

The review process after implementing these updates reflects resource prioritization. The reviews are scheduled in precedence and readiness order from March 2019 through December 2019.
Post-Launch Product Tests: GLM

- Goal of GLM PLPTs are to verify the system Detection Efficiency, False Alarm Rate, and INR quality over full range of seasonal effects.
- Detection efficiency is meeting specifications (70%), but a lookup table update recently installed improved it even more.
- Provisional review on December 20 confirmed improvements in detection efficiency and false alarm rate. Data allowed to become public after the Provisional declaration.

System Performance Characterization (PLTs):
Timing Settings, Image Quality, Lightning Threshold Settings, Solar Intrusion Criteria Verification, INR Performance, Alignment Assessment

Intercomparision with Ground-based and Space-based Lightning Detection Systems:
Very Long-, Long-, Medium-, and Short-range Networks, Optical-based Networks, Electric Field Networks, and Orbital (ISS-LIS, TARANIS (2018))

Laser Beacon Campaign

Combined Networks
GLD360

Spatially Averaged DE: 73% 88%

NOAA’s GOES-17 satellite has not been declared operational and its data are preliminary and undergoing testing. Users receiving these data through any dissemination means (including, but not limited to, PDA and GRB) assume all risk related to their use of GOES-17 data and NOAA disclaims any and all warranties, whether express or implied, including (without limitation) any implied warranties of merchantability or fitness for a particular purpose.
Post-Launch Product Tests: GOES-17 SUVI L1b

• GOES-17 SUVI is performing in family with GOES-16 SUVI
 – Based on results from PLPTs (G16 intercomparison, Detector Characterization and Trending, Intercomparison with SDO AIA & EVE and with legacy GOES EUVS and GOES-R EXIS EUVS)

• During PLT, underwent a unique test to experiment with operating in a non-nominal scan mode, utilizing a 9-point scan slew to image the entire extended coronagraph. Results were very encouraging!
 – For more info see presentation on Thursday: SH34A-09: Coronal Imaging Campaign with SUVI (Kumar Tadikonda)

• Due to a minor issue with image navigation in the yaw-flipped orientation, the Provisional maturity review will be held after the spacecraft flips back to upright in the end of March. Meanwhile, the navigation issue is being addressed by an upcoming software release.

NOAA’s GOES-17 satellite has not been declared operational and its data are preliminary and undergoing testing. Users receiving these data through any dissemination means (including, but not limited to, PDA and GRB) assume all risk related to their use of GOES-17 data and NOAA disclaims any and all warranties, whether express or implied, including (without limitation) any implied warranties of merchantability or fitness for a particular purpose.
GOES-17 MAG L1b Status at Beta Maturity

• Initial biases are reasonable (~5 nT)
• Sensitivity to interference
 – Arcjet firings cause a significant problem. At Beta, noise and bias did not meet requirements. Arcjet flags are now in place to aid manual removal of signature from data; arcjet correction algorithm in work.
• Inboard/outboard differences
 – Long-term drift (5 nT) exceeds 1.7 nT accuracy requirement
 – Inboard MAG anomaly exceeds 1.7 nT bias requirement (~6 nT shift)
 • Validation analysis will continue with Outboard MAG only
• On track for Provisional maturity in January 2019 (or soon thereafter based on shutdown)

NOAA’s GOES-17 satellite has not been declared operational and its data are preliminary and undergoing testing. Users receiving these data through any dissemination means (including, but not limited to, PDA and GRB) assume all risk related to their use of GOES-17 data and NOAA disclaims any and all warranties, whether express or implied, including (without limitation) any implied warranties of merchantability or fitness for a particular purpose.
EXIS:

- Detector Characterization, Image Quality, Degradation Trending, Intercomparison to GOES-R SUVI, XRS & EUVS on legacy GOES, SDO AIA & EVE, TIMED SEE, GOME2A, 2B, SORCE SOLSTICE, etc.
- A dedicated space weather software update is being installed in the Ground System to get EXIS to Provisional maturity in February 2019 (or soon thereafter).
- EXIS PLPTs will begin once the new software update is installed.

SEISS:

- System checks, internal cross-comparisons, contamination corrections, background trending, satellite intercomparisons. PLPTs are underway for all 4 sensors.
 - Since we’re at a minimum for solar activity, galactic cosmic rays are being used in validation efforts instead of solar particle (proton) events.
- MPS-HI L1b Product declared at Provisional maturity December 18, 2018.
- SGPS, EHIS, and MPS-LO Provisional maturity coming in next few months
GOES-17 Transition to Operations

• GOES-17 transition to operations as NOAA’s GOES West is delayed
 – Originally scheduled for December 10, 2018
 – GOES-17 continues checkout from 137.2 degrees west longitude
 – Due to cryocooler software issue experienced in November. Problem now fixed.
 – Transition to GOES West will be delayed until January 2019
 – GOES-15 will operate in tandem with GOES-17 for at least 6 months to allow for assessment of the performance of GOES-17 as the GOES West operational satellite.
 – GOES-15 moved to 128 degrees west to eliminate radio frequency interference with GOES-17

• GOES-15 (GOES West and GOES-16 (GOES East)) remain healthy and continue to provide operational coverage of the Western Hemisphere
 – Slight delay in transitioning GOES-17 to operations will not adversely impact ongoing NOAA operations

https://www.goes-r.gov/users/transitionToOperations17.html
Note that Web Page is not being updated during Shutdown!
NOAA’s GOES-17 satellite has not been declared operational and its data are preliminary and undergoing testing. Users receiving these data through any dissemination means (including, but not limited to, PDA and GRB) assume all risk related to their use of GOES-17 data and NOAA disclaims any and all warranties, whether express or implied, including (without limitation) any implied warranties of merchantability or fitness for a particular purpose.
GOES-T and GOES-U Status

• ABI radiator is being redesigned for GOES-T and GOES-U to reduce risk of cooling system anomalies seen on GOES-17

• GOES-T:
 – Environmental testing on hold pending ABI radiator redesign
 – Due to redesign, planned May 2020 GOES-T launch date will be delayed
 – Once new radiator design is approved, a new launch date will be determined

• GOES-U:
 – Preparing to add NRL’s Compact Coronagraph for coronal mass ejection detection (follow-on to SOHO), pending funding approval
 • CCOR Preliminary Design Review completed in September
 – Launch planned for 2024
Thank you!

elizabeth.kline@noaa.gov
Annual Fluctuation of FPM Temperatures

G17 baseline operating temperature is 81 K, nominally is 60 K

We are here, in our twice annual ‘cool period’
Cryocoolers & LHP Model

Cryocoolers take heat from the ABI focal plane module (FPM) to a reject surface. Both cryos are required to maintain FPM temperature.

Heat pipes pick up the heat and deliver it to the radiator.

Heat is transferred from the focal plane to the radiator through loop heat pipes.
GOES-16 is OPERATIONAL as NOAA’s GOES-East.

December 18, 2017