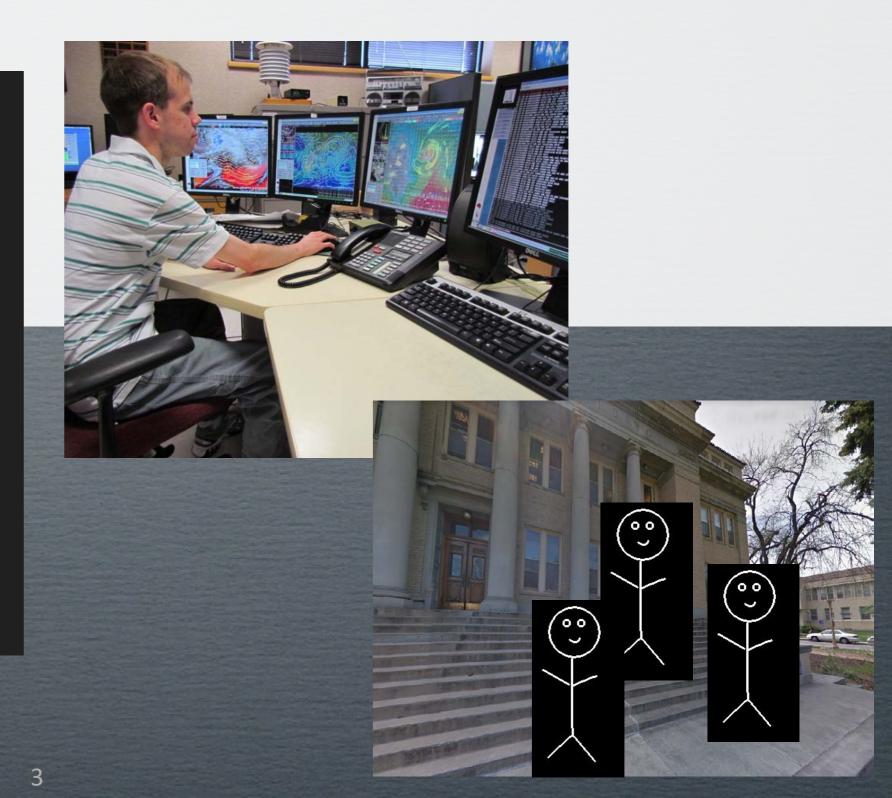
Strengthening National and International Training Activities by Utilizing Similarities and Differences

Bernadette Connell and Erin Dagg, CIRA CSU, USA Luciane Veeck, CIRA & WMO VLab, UK Kathy-Ann Caesar, CIMH, Barbados

AMS 99th Annual Meeting, Phoenix, AZ., 6-10 January 2019 15th Symposium on New Generation Operational Environmental Satellite Systems Session 9B

Acknowledgements: This work was supported by GOES-R, JPSS, and NWS under NOAA Grant NA14OAR4320125

Short list of additional contributors to development of training materials: Dan Bikos, Ed Szoke, Jorel Torres, CIRA, Scott Lindstrom, CIMSS Mike Davison and Jose Galvez (SRG), NOAA/NWS/NCEP/WPC International Desks NOAA/NWS/OCLO, COMEt, SPoRT Marcial Garbanzo, Univ. Costa Rica, Marines Campos, SMN Argentina, Natalia Rudorff, INPE Brazil

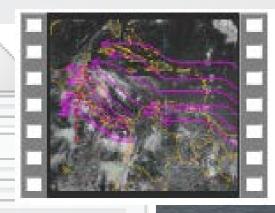

Who are the people we train?

Primary focus: National Weather Services

Secondary focus:

- Academia
- Managers Public and Private

Similarity


In support of societal benefit areas Similarity

Hydrology Hydrology Agriculture Agriculture Forestry Forestry Utilities

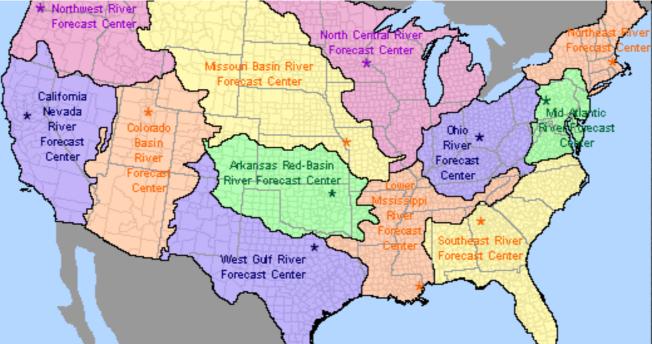
Transportation Transportation Emergency

Weather and Outdoor Enthusiasts

Media and General Public

NOAA National Weather Service

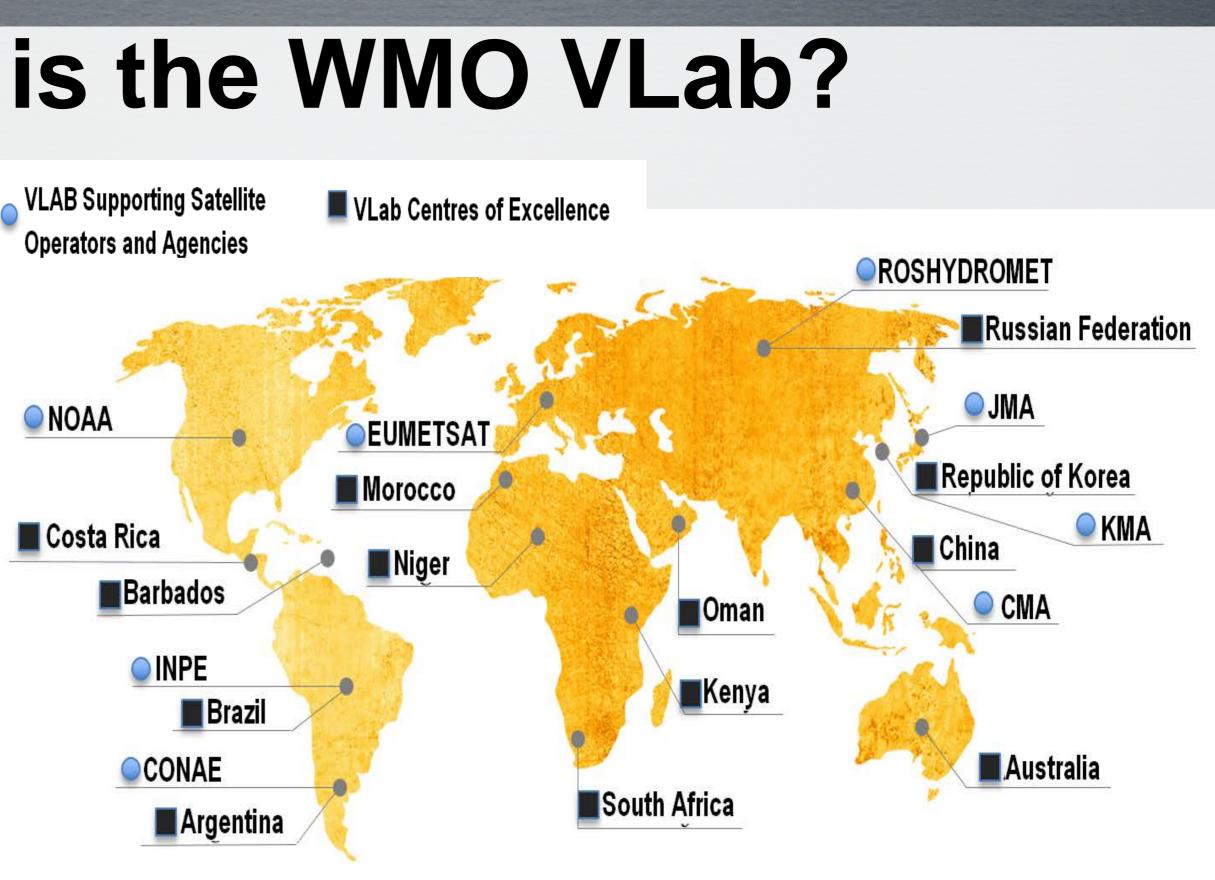
NOAA National Weather Service


Common spoken language From one large country

Honolu

Guan

ts

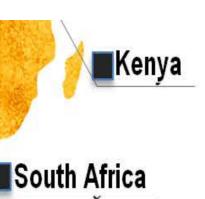


What is the WMO VLab?

WMO-CGMS Virtual Laboratory for Education and Training in Satellite Meteorology

> A worldwide collaborative network connecting Training Centres of Excellence (CoEs) & Satellite Operators

http://www.wmo-sat.info/vlab/


What is the WMO VLab?


Multiple spoken languages Many countries of varying sizes

Training Centres of Excellence (CoEs) & Satellite Operators

8

http://www.wmo-sat.info/vlab/

Training Approaches

- Virtual and in-person
- Seasonal

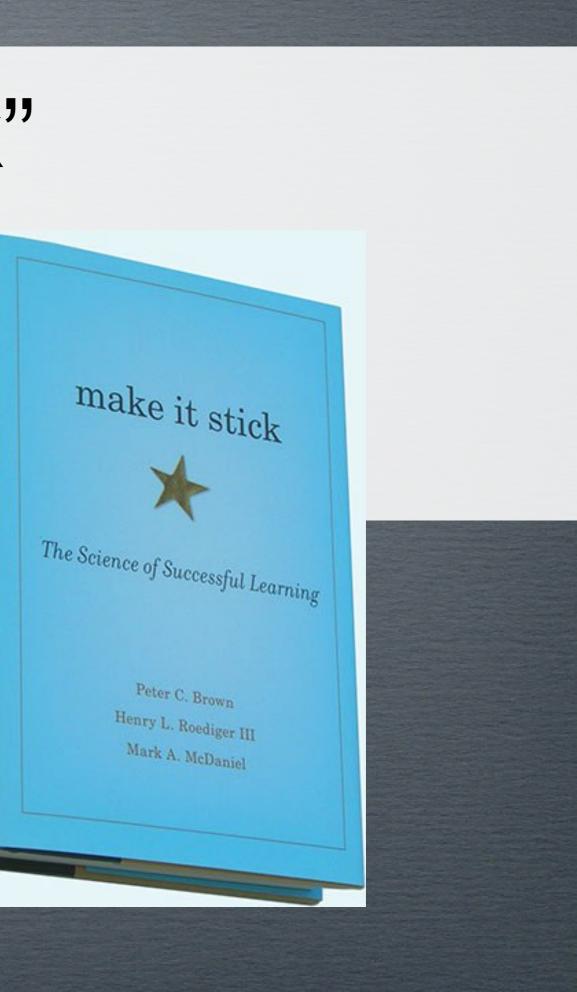
Training **Event Weeks**

Regular Webinar Sessions

- **Conceptual Models** ightarrow
- **Training Development** Plan
- Simulations igodot
- **Modules and Courses** ightarrow
- **Quick Guides and Briefs**
- Satellite Skills and igodot**Knowledge Document**

Multi-lingual

9


Tools and resources

Monthly Virtual Regional Focus Group (RFG) Application Topics

To "Make it Stick"

- Learning requires a foundation of knowledge
- Hands-on applications strengthen knowledge retention.
- Learning is deeper and more durable when it requires effort.
- Recall of information strengthens retention.

1

National

Satellite Foundation Courses

- for GOES (SatFC-G)
- for soon to be released JPSS (SatFC-J)

1

Title		Length	Contributor		Developed		
Basic Principles of Radiation		15	COMET		2016		
Basic Operations of ABI on GOES-R		15	Lindstrom (CIMSS)		2016	-	
GOES-R	ABI Visible and Near-IR Bands	15	СС	DMET	2016		
GOES-R ABI Near-IR Bands		15	COMET		2016		
GOES-R AB	Торіс	Title		Expected Completion Ti	ime Contri	butor	Developed
GOES-R Multi	Introduction to Microwave Remote	Introduction to Microwave Remote Sensing		20	CIR	2A	2018
<u>_</u>	Introduction to Microwave Remote Sensing	Oxygen and Water Vapor Absorption Bands		20	CIR	RA.	2018
GOES-R Cloud and n	Introduction to Microwave Remote Sensing	<u>Microwave Surface</u> <u>Emissivity</u>		20	CIR	2A	2018
GOES-R Fire character GOES-R Baseline	Sensing	Influence of Clouds and Precipitation		20	CIR	2A	2018
GOES-R	Introducing Suomi NPP, JPSS, GCOM and GPM	<u>Orbits and Data Availability</u>		20	Dills (C	OMET)	2018
GOES-R Baseline	Introducing Suomi NPP, JPSS, GCOM and GPM	The VIIF	<u>\S Imager</u>	30	Lee and (COM		2018
GOES-R Base	Introducing Suomi NPP, JPSS, GCOM and GPM	The CrIS and ATMS Sounders		35	Dills (Co	OMET)	2018
GOES-R	Introducing Suomi NPP, JPSS, GCOM and GPM	<u>The AMSR2 Microwave</u> <u>Imager</u>		25	Lee and (COM		2018
<u> </u>	Introducing Suomi NPP, JPSS, GCOM and GPM	NASA GPM Overview		20	SPo	RT	2018
Visualizing the Geos	Beneficial Produces and their Applications	Uses of VIIRS Imagery		20	Lindst (CIM		2018
GOES-R Introduct	Beneficial Products and their Applications	The VIIRS Day	<u>y / Night Band</u>	20	Lee and (COM		2018
GOES-R	Beneficial Products and their Applications	NUCAPS Soundings		15	Lindst (CIM		2018
	Beneficial Products and their Applications		f Satellite ons on NWP	20	COM	IET	2017

SatFC-G http://rammb.cira.colostate.edu/training/shymet/satfc-g_intro.asp http://rammb.cira.colostate.edu/training/shymet/training_sessions/satfc-j.asp SatFC-J

Quick Guides and Quick Briefs

National

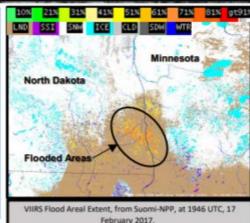
For GOES-R and JPSS series imagery and products

Contributors:

Dan Bikos and Erin Dagg

Cooperative Institute for Research in the Atmosphere (CIRA) / Colorado State University (CSU)

http://rammb.cira.colostate.edu/training/visit/


http://rammb.cira.colostate.edu/training/visit/quick_reference.asp

VIIRS Flood Areal Extent

Quick Guide

Why is the VIIRS Flood Areal Extent Important?

The Visible Infrared Imaging Radiometer Suite (VIIRS) Flood Areal Extent, is a satellite-based flood extent product, derived from daytime Suomi-National Polar-orbiting Partnership (Suomi-NPP) and NOAA-20 satellite imagery. In this product, flood extent is represented in floodwater fractions, where 'water fraction' indicates percentage of open water extent in a VIIRS 375-m pixel. VIIRS Flood Areal Extent provides the spatial distribution of floodwater, that is valuable for National Weather Service (NWS) and River Forecast Center (RFC) forecasters with respect to flood forecasting applications. Government decision-makers also benefit from the product by determining the severity of flooding in relation to disaster mitigation efforts

VIIRS Flood Areal Extent algorithms and specifications

Algorithm (s)	Temporal Resolution	Spatial Resolution	Latency	
Water, cloud and terrain shadow, and floodwater fraction detection algorithms, using VIIRS Imagery bands. Floodwater is determined by comparing the detected water against a water reference map (derived from MODIS global 250-m water mask and water layer in the 30-m National Land Cover Dataset).	 ~1330 local time for CONUS. More frequent coverage over Alaska. 	• 375-m	 ~1-hour Includes data processing and data distribution 	
Impact on Operations	Limitations			

Primary Application

Flood mapping: Product detects loods in areal extent caused by ainfall, ice jams, snow-melt and other hydraulic projects or failures

over lands and snow/ice surface. The areal flood extent is calculated in 'floodwater fractions' or percentages of each 375-m pixel, ranging from 0-100%, (green to red colors).

ice Jams: Help locate ice jams and indicate the dynamic change of ice-jam floods by observing ice movement and loodwater evolution.

Snowmelt: Assists in snowmelt runoff analyses and flood forecasting by observing snow-melt water flow and accumulation

Daytime only

application: Product utilizes VIIRS 'reflectance' magery bands that depend on sunlight. Product not applicable during the nighttime.

Cloud Cover, Cloud and Terrain Shadows

and Floodwater: Clouds prevent viewing of the surface, and assessing the degree of flooding. Clear-sky environments are optimal. Cloud and terrain shadows also pose a problem, due to their similar spectral properties to floodwater.

Contributor: Jorel Torres, Erin Dagg, and Bernie Connell, CSU/CIRA https://www.cira.colostate.edu/

National

FDTD GOES Applications Webinars

26 September 2018

FDTD GOES-16 Applications FDTD GOES-16 Applications Making the Impossible in DSS...Possible! Wildland Fire Notifications for Impact-Based Utilizing Radar and Satellite to Provide Meaningful Lightning Initiation and **Decision Support Services in Oklahoma** Cessation Information For Effective Decision-making. Presented by Presented by **Todd Lindley** Pete Wolf NWS WFO Norman, OK WFO Jacksonville FL **EIRA GIRA**

Facilitated by Dan Bikos and Scott Lindstrom (CIMSS)

http://rammb.cira.colostate.edu/training/visit/satellite_chat/

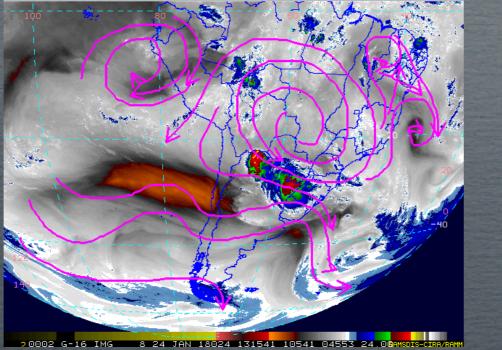
13

23 May 2018

International

- Visitors to the NWS/NCEP/WPC International Desk (4 months)
- Virtual or in-person training event

Americas and the


Caribbean

over 14 years!

Bi-lingual

 Virtual Regional Focus Group Climate and Weather Discussions

Monthly

http://rammb.cira.colostate.edu/training/rmtc/fg_recording.asp

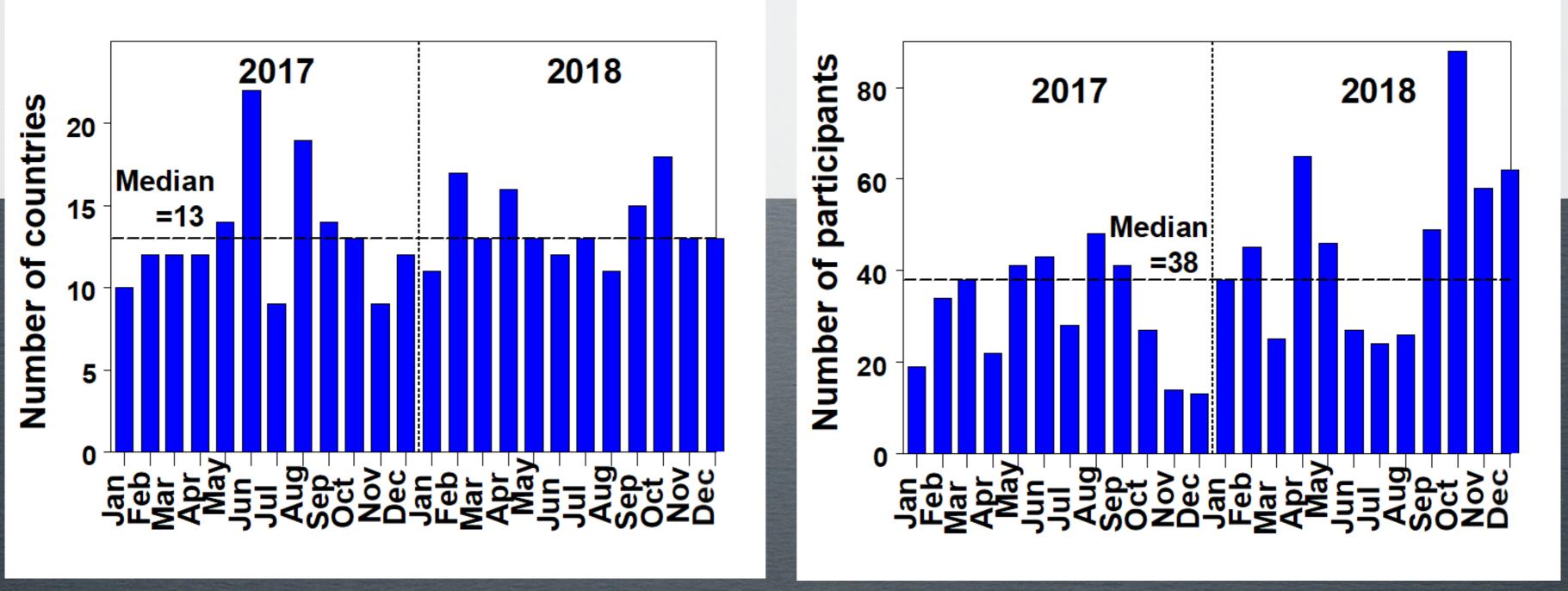
Intl Desk ●current visitor →arriving visitor →departing visitor

14

RFG Sessionparticipating country

WPC

Intl Desk


CIRA

Combined International Participation

October 2018

International

Participation in the Virtual Regional Focus Group Climate and Weather Discussions

1

Calendar of Events

This online Calendar of Events shows the upcoming training events, workshops, conferences and online sessions organised by VLab Members and partner Programmes. The Calendar is continuously updated, so make sure to revisit this page frequently.

DATE	TITLE	CITY	CONTACT	INFO	DESCRIPTION
20/08/2018 - 21/09/2018	Identifying African Weather Systems & Features in Satellite Imagery 2018		EUMETSAT Training Team		The objective of the online course is to optimize the use of data from meteorological satellites and to increase the knowledge and skills of meteorological trainers, contributing to improve forecastin
27/08/2018 10:07 UTC - 07/09/2018 10:08 UTC	XV Ibero American Course	Cartagena	Patricio López		The course will focus on tropical meteorology and the application of Meteosat and GOES satellites to weather phenomena in the Caribbean region and surrounding countries.
28/08/2018 - 30/08/2018	Eumetcal Workshop 2018	Riga			More information will be available later: https://eumetcal.eu/
30/08/2018 15:00 - 16:00 UTC	RFG of Americas and the Caribbean - 15:00 UTC	Online	Bernie Connell	•	The sessions are bilingual (English and Spanish) and for WMO regions III (South America) and IV (Central America/Caribbean). Session time is 15:00 UTC, but as usual, it will start 15 minutes earlier
04/09/2018 16:00 UTC - 25/09/2018 16:30 UTC	High Temporal Resolution Air Quality Observations from Space		Brock Blevins	9	For certain applications, some satellites take too long to revisit the same spot. Some satellites are capable of consistent monitoring of the same area. This webinar series will cover satellites with
05/09/2018 13:00 UTC - 19/09/2018 13:00 UTC	Advanced Webinar: Processing Satellite Imagery for Monitoring Water Quality		Brock Blevins	9	Polluted water influences all aspects of life, including people, animals, and the environment. NASA satellite observations provide near real-time information about water quality. This freely available
14/09/2018 09:00 - 10:00 UTC	Live Training on Satellite & NWP integration for Convection & Fog		Training	0	Operational meteorologists use the Satellite and NWP information for understanding the weather situation better and for preparing weather forecasts for their users and the general public. Integrating
17/09/2018 - 21/09/2018	EUMETSAT Meteorological Satellite Conference 2018	Tallinn			EUMETSAT has organised a meteorological satellite conference every year for over thirty years. During that time, the conference has become a key annual event for the meteorological and scientific comm
24/09/2018 - 28/09/2018	Autumn School on the Use of Satellite Data on Nowcasting High Impact Weather	Thessaloniki	EUMETSAT Training Team		The focus of the Autumn School is nowcasting, which is informing about the state of the atmosphere foreseen for the next hours, and how satellites can help to figure out the atmospheric evolution in t
26/09/2018 15:00 - 16:00 UTC	RFG of Americas and the Caribbean - 15:00 UTC	Online	Bernie Connell	9	The sessions are bilingual (English and Spanish) and for WMO regions III (South America) and IV (Central America/Caribbean). Session time is 15:00 UTC, but as usual, it will start 15 minutes earlier
27/09/2018 14:00 - 15:00 UTC	CALMet Online Design Workshop		Tsvetomir Ross- Lazarov	•	A series of online collaboration sessions for trainers in the field of meteorology. Participants submit current training projects that they would like to discuss with other trainers; much of the works
01/10/2018 - 01/12/2018	Synoptic and Mesoscale Analysis of Satellite Images 2018		EUMeTrain TSO	•	The course will be offered in a blended format, consisting of an online phase followed by a classroom phase. The location of the classroom phase as well as additional information about the course cont

Regional and **Global Activities**

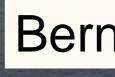
Events advertised in the VLab Online Calendar X WMOLearn **Events Calendar**

http://www.wmo-sat.info/vlab/

Summary of Successes

Foundational Training is available for new satellites ightarrow

Structure is in place to develop and deliver training for varied audiences: ightarrowboth trainers and users


Capacity Building \rightarrow

Challenges and Opportunities

- Not all countries have adequate access to the internet
- People and other resources are limited.... but they are \bullet resourceful 🙂
- Training entities will continue to assess and address the next levels of capacity building.

Bernie.Connell@colostate.edu