Improving Boundary Layer Profiling by Augmenting Space-Based Measurements with Ground-Based Interferometers

David M. Loveless¹, Timothy J. Wagner², Robert O. Knuteson², and S. A. Ackerman ¹,²
¹Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin–Madison
²Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison

Introduction

Motivation: Improving observations of the boundary layer was identified as a priority by the 2017 Decadal Survey.

Method: Supplement the space-based Cross-track Infrared Sounder (CrIS) with the ground–based Atmospheric Emitted Radiance Interferometer (AERI) to improve the representation of the boundary layer.

AERI Overview:
AERI is a ground–based interferometer that measures downwelling radiance at 1 cm⁻¹ resolution from 520 to 3000 cm⁻¹ (19.2 to 3.3 μm). Its high–temporal resolution makes it ideal for observing changes to the boundary layer, such as the development of a low-level inversion in this 20 June 2015 example. It also compares favorably to radiosondes in this 20 June 2015 example. It also compares favorably to level inversion in this 20 June 2015 example. It also compares favorably to radiosondes in this 20 June 2015 example. It also compares favorably to radiosondes in this 20 June 2015 example.

AERI has greater information content, using degrees of freedom (DOF).

Results

Temperature jacobians suggest that CrIS is most sensitive to the middle troposphere and upper boundary layer. AERI is very sensitive to the boundary layer but has almost no sensitivity above 750 hPa.

Future Work

• Repeat this analysis for water vapor mixing ratio in order to understand improvements from this synergy for the entire thermodynamic state.
• Overall goal is to develop an optimal estimation retrieval using the two instruments.

Acknowledgements
This research is supported by National Aeronautics and Space Administration (NASA) prime award number NNX17AQ03A “Educational Opportunities in NASA STEM (EONS).”

Objective: Assess the potential gains from a synergy between the space–based CrIS and the ground–based AERI by quantifying information content, using degrees of freedom (DOF).

Experiment Set–Up

CrIS and AERI observe the same atmospheric state, but from different perspectives. Combining the two sets of measurements should result in an improved estimate of the observed state. Calculating degrees of freedom (DOF) is one way to assess the information content of a retrieval, and assess this improvement. DOF is a measure of the independent pieces of information able to be determined by the measurements. DOF is the trace of the averaging kernel A:

\[A = \left(K^T S^{-1} K + S^{-1}_e \right)^{-1} \]

Where K is the jacobian, S is the measurement error covariance matrix, which is set to be 0.2 mW m⁻² str⁻¹ cm⁻¹ K⁻¹ for each channel (we assume no model error for simplicity). S is the a priori covariance matrix. S is calculated from 4,014 summertime radiosondes in clear sky conditions from the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site in Lamont, OK. We will only look at temperature in this study.

Future Work

• Repeat this analysis for water vapor mixing ratio in order to understand improvements from this synergy for the entire thermodynamic state.
• Overall goal is to develop an optimal estimation retrieval using the two instruments.

Acknowledgements
This research is supported by National Aeronautics and Space Administration (NASA) prime award number NNX15AQ03A “Educational Opportunities in NASA STEM (EONS).”

Contact: dloveless@wisc.edu

Potential Benefits

• We hypothesize that a combined retrieval will improve the representation of the capping inversion and thus improve monitoring of convective initiation.
• Potential operational benefits depend on the development of a ground–based thermodynamic profiling network and infrared hyperspectral sounding from geostationary orbit.