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Trends in Global Earth Observation Systems

e GOS Trends:

New Players in GOS (international,
commercial, etc)

* New Sensors (higher resolutions, etc)
* New technologies (small sats, etc)
* Emergence of New GOS (loT, etc)
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Why Al?

* Al applied successfully in fields with similar traits as Environmental data &
NWP/SA: (1) # obs. systems to analyze/assimilate/fuse and (2) predict
behavior

* Medical field (Watson Project): Scan Image Analysis, Cancer detection, heart Sound
analysis
* In finance: Algorithmic Trading, market data analysis, portfolio management

* In Music: Composing any style by learning from huge database & analyzing unique
combinations.

 Self-Driving Transportation Devices: Fusion of Multiple Observing Systems for situational
awareness

* We believe Environmental data exploitation (remote sensing, data
assimilation and perhaps forecasting), presents a viable candidate for Al
application.

* This presentation is meant to present a few examples to convey that the
potential is significant.




Meta-Transfer Learning
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Exploring Al for Remote Sensing, NWP &
Situational Awareness (SA). Status

Secure Data . . Bias Intelligent Pre-processing Quality Control Radiative Data
f Calibration

Ingest Correction Thinning & Inversion (QC) Transfer Assimilation

Al has also a potential impact on
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Methodology and Description

baby st
(baby steps) Training & Verification:
* Scope of the effort: Nowcasting/RS and Forecasting . Sets: ECMWF Analyses, GSNR
Adjustment fields, GDAS Analyses
O focus'on satelllte-bgsed a.nalyses (RS-), focgsmg on an enterprise , ... 2qdition: uncorrelated,
algorithm used for inversion and assimilation pre-processing Gaussian distributed noise with
o but also assess capability of short term forecast correction spread of (instrument noise*2)
. . . is added to simulations
o focus on atmosphere (T, Q, Wind) but highlight surface
parameters and hydrometeors capability as well «  Sampling: Training data is

randomly selected from a fixed
set of “5% of a days worth of
data in each training epoch

* Tools: Google TensorFlow

 Real data

o Focus on SNPP/ATMS and SNPP/CrIS * Simple training (sample over a
day generally

* Independent sets used for
verification, but still the same
period



MIIDAPS-AI Product Examples — Real Polar Geo IR and MW
Observations
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Can Al be used to perform bias correction of products/instru

observations?
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Predicted Temperature and Water Vapor profiles vs. ECMWF

Inputs: AMSUA/MHS TB

Outputs: T, Tskin, Q

NOAA-18 AMSU-A/MHS 05/19/2018 Statistics

=)

T T T
-2 0 2
Temperature, [K] | Blue:Bias Red:Stdv.

NOAA-18 AMSU-A/MHS 05/19/2018 Statistics

T T T
-20 0 20
Water Vapor, [%] | Blue:Bias Red:Stdv.

-
40

Outputs: T, Tskin, Q, BC(TB,,-Tb

o
a
=
o
et
S
a
a
o
jd
a

Pressure, [hPa]

Inputs: AMSUA/MHS TB

NOAA-18 AMSU-A/MHS 05/19/2018 Statistics

real)

102

2 x10?

103 T T T T
-4 -2 0 2

Temperature, [K] | Blue:Bias Red:Stdv.
) NOAA-18 AMSU-A/MHS 05/19/2018 Statistics
10 .
2 x10?

6% 102

)/

10° - T T
-20 0 20
Water Vapor, [%] | Blue:Bias Red:Stdv.

T
40

Adding BCinto the training set
improves the bias for both
temperature and water vapor profiles
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Can Al Be Used as Forward Operato

Use of Deep Neural Network (DNN) for Radiative Transfer Modeling Purposes

N-dVAR Assimilation/Retrieval
Measured Radiances
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thermal hands?
. NVIDIA’'s Image Inpainting Algorithm
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thermal bands?

Masked image. ABI Band=07

Proposed GOES-17 ABI Thermal
Band Calibration Correction
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Use of “morphing” Al Tool (“dogs” video morphing (g8
software) for Cloud/Precip morphing oconrs oo

Note the potential for
morphing both the shape
and color (i.e. equivalent of
track and intensity)
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Used total integrated cloud ice from NASA GEOS-5 Nature Run (G5NR)

“ALO1” tropical cyclone at two time-steps (0200z and 0600z). - . A
0.0 0.1 0.2 0.3 04 06 0.7 0.8 0.9 1.0

Morphing software applied as a black box with some hand tuning of WP
transformations between the two images.
e Im rich mol ing 20 transformation weenim Credit: Example output and software from:
age atright samp ed us g 0 transformations betwee ages http://andrew.gibiansky.com/blog/image-processing/image-morphing/




Use of GPR (Gaussian Process Regression) Al Model for Data Fusion/Assimilation (Case of AMV)

Background and Measurements
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* Synthetic wind observations (red) are injected onto background (black) fields and GPR used to “fuse” the two.

* Color code corresponds GPR confidence — warmer colors reflect high confidence, while colder colors reflect low
confidence estimates — and are consistent with observation locations.



Correcting TPW Forecasting with Al?

ECMWEF vs Al-corrected 6h fcst valid @ECMWF analysis time ECMWEF vs 6 hr frcst valid @ECMWEF analysis time.
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Conclusions

¢ Increase in number, diversity and sources of global observing systems (GOS) including private sector. This presents unprecedented (and
welcome) added resiliency and quality of the GOS. However this presents challenges: Cost and infrastructure to leverage/exploit them.

+» Computing constraints, perhaps require us to explore new approaches for the future (not so distant). Al-Based Analyses (satellite-exlusive)
are found to be radiometrically, spatially and geophysically consistent with traditional analyses.

+»* Goal of this study is not to show Al can do better, but that it can provide at least similar quality, much faster. It appears to be doing that.

+» Different components can benefit from Al (Inversion, Data Assimilation, RT, QC, Data Fusion,.. ) for NWP and Situational Awareness SA.

¢ Encouraging results so far were found when assessing derivation of AMV using Al (not shown) and when assessing the feasibility of
correcting GFS forecasts (using ECMWEF as a target). Pointing to the potential for using Al for actual forecasting (at least short-term).

+* Training is key for Al. Nature Run Datasets presents a good source for this.

¢ Pursuing Al applications, we believe, will allow us to :
* (1) Reduce pressure on Infrastructure (ground systems), HPC and cost
* (2) benefit from new environmental data (and face increased volume), including satellite data from all partners, including loT
* (3) Improve Latency
* (4) Reduce cost of running legacy systems (remote sensing and data assimilation/fusion systems)
* (5) Increase percentage of satellite data being assimilated (improved thinning, QC-ing, faster processing, etc)
* (6) Reduce time to run OSE/OSSE and in general data assimilation/fusion systems, for decision making purposes
* (7) Perhaps Improve forecast as a result of above and because Al can be exploited for forecast improvement



