

Exploring the Use of Artificial Intelligence (AI) to Optimize the Exploitation of Big Satellite Data in NWP and Nowcasting

S. Boukabara, E. Maddy, N. Shahroudi, R. N. Hoffman, T. Connor, S. Upton, A. Karpovich, C. Sprague, and K. Kumar

NOAA/NESDIS Center for Satellite Applications and Research (STAR), College park, MD, USA

Riverside Technology Inc. (RTI) @ NOAA/STAR, College park, MD, USA

University of Maryland (UMD), College Park, MD, USA

Why Artificial Intelligence (AI) ? Background and Motivations

Methodology & Description

AI for Remote Sensing and Data Assimilation/Fusion/NowCasting

Conclusions

Trends in Global Earth Observation Systems

• GOS Trends:

- New Players in GOS (international, commercial, etc)
- New Sensors (higher resolutions, etc)
- New technologies (small sats, etc)
- Emergence of New GOS (IoT, etc)
- <u>Significant Increase in volume and</u> <u>diversity of data</u>

Parallel Trends

- Budget, HPC Constraints
- Higher societal impact and expectations
- Higher users expectations
- Demand for Increase in quantity of data assimilated (5% currently assimilated)

Why AI?

- AI applied successfully in fields with similar traits as Environmental data & NWP/SA: (1) # obs. systems to analyze/assimilate/fuse and (2) predict behavior
 - Medical field (Watson Project): Scan Image Analysis, Cancer detection, heart Sound analysis
 - In finance: Algorithmic Trading, market data analysis, portfolio management
 - In Music: Composing any style by learning from huge database & analyzing unique combinations.
 - Self-Driving Transportation Devices: Fusion of Multiple Observing Systems for situational awareness
 -
- We believe Environmental data exploitation (remote sensing, data assimilation and perhaps forecasting), presents a viable candidate for AI application.
- <u>This presentation is meant to present a few examples to convey that the</u> <u>potential is significant.</u>

Meta-Transfer Learning

Exploring AI for Remote Sensing, NWP & Situational Awareness (SA). Status

Methodology and Description

- Scope of the effort: Nowcasting/RS and Forecasting Adjustment
 - focus on satellite-based analyses (RS), focusing on an enterprise algorithm used for inversion and assimilation pre-processing
 but also assess capability of short term forecast correction
 focus on atmosphere (T, Q, Wind) but highlight surface parameters and hydrometeors capability as well
- **Tools:** Google TensorFlow

Real data

 \odot Focus on SNPP/ATMS and SNPP/CrIS

Training & Verification:

- Sets: ECMWF Analyses, G5NR fields, GDAS Analyses
- Noise addition: uncorrelated, Gaussian distributed noise with spread of (instrument noise*2) is added to simulations
- Sampling: Training data is randomly selected from a fixed set of ~5% of a days worth of data in each training epoch
- Simple training (sample over a day generally
- Independent sets used for verification, but still the same period

MIIDAPS-AI Product Examples – Real Polar Geo IR and MW Observations

MIIDAPS-AI Remote Sounding Algorithm

- Algorithms are deep feed forward (and locally-connected) neural networks trained in simulation and applied to real observations
- Network architecture and hyper parameters are tested and optimized using Google TensorFlow™ and Keras

Can AI be used to perform bias correction of products/instruments (

Can Al Be Used as Forward Operator

Use of Deep Neural Network (DNN) for Radiative Transfer Modeling Purposes

Can AI be used to perform calibration correction for GOES-17 A thermal bands?

Can AI be used to perform calibration correction for GOES-17 A thermal bands?

Use of "morphing" AI Tool ("dogs" video morphing software) for Cloud/Precip morphing

Note the potential for

track and intensity)

morphing both the shape

and color (i.e. equivalent of

- Used total integrated cloud ice from NASA GEOS-5 Nature Run (G5NR) "AL01" tropical cyclone at two time-steps (0200z and 0600z).
- Morphing software applied as a black box with some hand tuning of transformations between the two images.
 - Image at right sampled using 20 transformations between images

20060822 020000z

0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0 IWP

<u>Credit: Example output and software from:</u> http://andrew.gibiansky.com/blog/image-processing/image-morphing/

Can AI Tools Be Used for Data Fusion & Data Assimilation Use of <u>GPR</u> (Gaussian Process Regression) AI Model for Data Fusion/Assimilation (Case of AMV) Color confidence/error estimates **GPR-Based Analysis Background and Measurements** 20 20 15 15 10 10 5 5 0 0 -5 -5-10-10-15-15Wind background (black) and observations (red) GPR estimated winds -20 -2015 -10-5 10 20 5 25 30 -5 5 10 15 20 25 -100 30

• Synthetic wind observations (red) are injected onto background (black) fields and GPR used to "fuse" the two.

• Color code corresponds GPR confidence – warmer colors reflect high confidence, while colder colors reflect low confidence estimates – and are consistent with observation locations.

Correcting TPW Forecasting with AI?

sis time

Conclusions

- Increase in number, diversity and sources of global observing systems (GOS) including private sector. This presents unprecedented (and welcome) added resiliency and quality of the GOS. However this presents challenges: Cost and infrastructure to leverage/exploit them.
- Computing constraints, perhaps require us to explore new approaches for the future (not so distant). AI-Based Analyses (satellite-exlusive) are found to be radiometrically, spatially and geophysically consistent with traditional analyses.
- Soal of this study is not to show AI can do better, but that it can provide at least similar quality, much faster. It appears to be doing that.
- * Different components can benefit from AI (Inversion, Data Assimilation, RT, QC, Data Fusion,...) for NWP and Situational Awareness SA.
- Encouraging results so far were found when assessing derivation of AMV using AI (not shown) and when assessing the feasibility of correcting GFS forecasts (using ECMWF as a target). Pointing to the potential for using AI for actual forecasting (at least short-term).
- ***** Training is key for AI. Nature Run Datasets presents a good source for this.
- Pursuing AI applications, we believe, will allow us to :
 - (1) Reduce pressure on Infrastructure (ground systems), HPC and cost
 - (2) benefit from new environmental data (and face increased volume), including satellite data from all partners, including IoT
 - (3) Improve Latency
 - (4) Reduce cost of running legacy systems (remote sensing and data assimilation/fusion systems)
 - (5) Increase percentage of satellite data being assimilated (improved thinning, QC-ing, faster processing, etc)
 - (6) Reduce time to run OSE/OSSE and in general data assimilation/fusion systems, for decision making purposes
 - (7) <u>Perhaps</u> Improve forecast as a result of above and because AI can be exploited for forecast improvement