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VAP Anomaty (19952009 o All regions of the CRB experienced combined increases in mean annual precipi-

B <50 77 mm tation and decreases in mean annual temperature across the timeperiod.

;izz; o . While total SPI magnitude show consistent increases, SPI drought lengths did

1<-10.45 mm not increase everywhere in the basin. Despite these differences, total SSI

gizizmnfl“m drought magnitude did increase across major basin regions.

B <29.87 mm « Comparisons of monthly water balance and drought timeseries between the three

=331 mm basins reveal that SSI drought was more probable during longer SPI droughts,
occurring more readily with drier antecedent conditions.

Hydrologic Model: — Drought Magnitude and Decadal Computations MAP Anomal (1976-1986)
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We summed DM values across 1976-1986 and 1995-2005 for each major and nested basin
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perature (MAT) anomalies across two periods (1976-1986, 1995-2005) as the difference between

energy balance across the CRB domain.®® We
model at the 1/16° spatial resolution and at the dai- [
ly time step. We apply recent modifications includ-
iIng a “clumped” vegetation scheme (Figure 2, bot-
tom) to more properly account for bare soil in arid
and semiarid ecosystems.”
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Figure 10. (Top) Total SPI and (Bottom) SSI Drought Magnitudes of all drought events in Figure 9. (Top) Total SPI and (Bottom) SSI Drought Magnitudes of all drought events in 1976-
1976-1986 and in 1995-2005. 1986 and in 1995-2005.

Figure 3. Major basin areas, outlets, and nested basins.




