Private observations Improve

MET Norway's operational forecasts

Norwegian Meteorological Institute

Thomas Nipen • Ivar Seierstad
Cristian Lussana • Jørn Kristiansen

Background

World's 5th largest web-based forecast platform
\square Interface allows lookup on the neighbourhood scale

Background

World's 5th largest web-based forecast platform
Interface allows lookup on the neighbourhood scale
\square Private weather stations are becoming popular \square Low-cost and off-the-shelf devices
\square Data in real-time

Background

\square World's 5th largest web-based forecast platform
Interface allows lookup on the neighbourhood scale
\square Private weather stations are becoming popular \square Low-cost and off-the-shelf devices \square Data in real-time

- In March 2018, MET Norway introduced Netatmo observation into the post-processing of operational temperature forecast on Yr (for Nordic countries)

Network comparison

\square Netatmo's station density is roughly 50 times greater than MET Norway's

Integrating Netatmo into our operational system

\square Used in post-processing of temperature from NWP
\square System is run every hour
\square Seamless transition from +0 h to +1 h

Observations Netatmo, WMO, ++
2. Merging

Current and past 24h
Gridded truth +0h

NWP

2.5 km ensemble

Gridded forecast
+1h to +60h

1. Observation quality control

\square Use neighbouring stations to remove suspicious values (21\%)
E Each hour is checked independently

2. Merging observations and NWP

\square Optimal interpolation (OI) is used to combine NWP and obs
\square The covariance structure from EPS used

Integrating Netatmo into our operational system

\square Used in post-processing of temperature from NWP
\square System is run every hour
\square Seamless transition from +0 h to +1 h

Observations Netatmo, WMO, ++

NWP

2.5 km ensemble

Gridded truth +Oh

Current and past 24h

Gridded forecast
+1h to +60h

3. Bias-correction

\square Gridpoint by gridpoint correction
\square Seamless transition from gridded truth to gridded forecast
\square Diurnally varying bias based on last 24 hours

Impact on forecast accuracy

\square 1-year evaluation at 93 Norwegian WMO stations
\square All stations have at least 5 Netatmo stations within 5 km

Impact on forecast accuracy

\square 1-year evaluation at 93 Norwegian WMO stations
\square All stations have at least 5 Netatmo stations within 5 km

Final remarks

- Private observations improve temperature forecasts on Yr
- Quality control is essential for getting added value
- The network has enabled us to use other non-WMO obs
- Future work: integrating Netatmo precipitation into forecasts

More information: Thomas Nipen (thomasn@met.no)
QC software: www.github.com/metno/TITAN
PP software: www.github.com/metno/gridpp

Norwegian Meteorological
Institute

