

<u>Rebecca Hornbrook^{*,1}, Eric Apel¹, Alan Hills¹, Elizabeth Asher¹, Louisa Emmons¹, Forrest Lacey¹, Becky Schwantes¹, Simone Tilmes¹, Jean-Francois Lamarque², John D. Crounse³,</u> Michelle J. Kim³, Alex Teng³, Paul O. Wennberg³, Kathryn McKain⁴, Colm Sweeney⁴, Eric Ray⁵, Paul Bui⁶, Róisín Commane⁷, Bruce Daube⁷, Steve Wofsy⁷, and the ATom Science Team. *rsh@ucar.edu; 1Atmospheric Chemistry Observations & Modeling Laboratory, NCAR, Boulder, CO; 3California Institute of Technology, Pasadena, CA; 4Global Monitoring Division, ESRL, NOAA, Boulder, CO; ⁵Chemical Sciences Division, ESRL, NOAA, Boulder, CO; ⁶NASA Ames Research Center, Mountain View, CA, ⁷Harvard University, Cambridge, MA.

Atmospheric Tomography (ATom) mission

NASA's Earth Venture suborbital (EVS-2) ATom dataset provides a unique opportunity to investigate the global distributions of the biomass burning (BB) tracers HCN and CH₃CN during four different seasons spanning 2016 through 2018. Here we assess the distributions of these BB tracers in the remote troposphere during the first two ATom deployments, and compare to CAM-chem, a global chemical model, using two different BB emissions inventories.

Study Regions:

- **1. PACIFIC/WEST ARCTIC**: solid regions, 5 lat. bands
- **2.** ATLANTIC/EAST ARCTIC: hashed regions, 5 lat. bands
- **3. CONUS**: 23°N to 60°N, 125° to 54°W

Gas-phase biomass burning tracer observations

During the four ATom deployments, biomass burning trace gases including HCN, CH₃CN, and CO were measured by several *in situ* instruments.

Table 1. Selected instruments in the ATom NASA DC-8 payload.

Instrument	Instrument Description	PI	Species Measured
TOGA	Trace Organic Gas Analyzer; gas chromatography/mass spectrometry	Eric Apel (NCAR)	NMHCs, OVOCs, Halocar CH_3CN , HCN, DMS
CIT-CIMS	Chemical Ionization Mass Spectrometer	Paul Wennberg (CalTech)	HNO ₃ , H ₂ O ₂ , CH ₃ OOH, N PAA, PNA, SO ₂
NOAA Picarro	Picarro Inc. wavelength-scanned cavity ring down spectroscopy	Kathryn McKain (NOAA)	CO ₂ , CH ₄ , CO
QCLS	Quantum Cascade Laser System	Bruce Daube (Harvard)	CO ₂ , CO, CH ₄ , N ₂ O

Global chemistry-climate model

- **CESM2**: Community Earth System Model, Version 2.1, exp003
- **CAM-chem** (Community Atmospheric Model Version 6.0 with comprehensive tropospheric and stratospheric chemistry) 0.9° x 1.25° horizontal resolution
- Meteorology nudged to MERRA2 meteorological reanalysis
- CMIP6 2014 anthropogenic emissions used for every year
- MEGAN (Model of Emissions of Gases and Aerosols from Nature) biogenic emissions; calculated online
- Biomass Burning emissions inventories:
 - FINN (Fire INventory from NCAR) daily fire emissions (Wiedinmyer et al., Geosci.Model Dev., 2011)
 - QFED (Quick Fire Emissions Dataset) non-native emissions created using FINN emission factors and QFED CO emissions (NASA GMAO)

ick biomass burning layer during ATom-1 near ASI, Photo: Rebecca Hornbroo

Global seasonal distributions of HCN and acetonitrile

Summary

• While both BB inventories capture the CO distribution fairly well, QFED overpredicts HCN and underpredicts CH₃CN, but predicts the African BB more reliably than FINN. • CAM-chem predicts the ratio of CH₃CN/HCN to remain consistent globally, while the observations

indicate loss mechanisms and differences in the losses that are not included in the model.