Llfecycle and Impacts of MCS Convectively-Generated Low-Frequency Gravity Waves
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250-m horizontal, 100-m vertical grld Fig. 2: Vertical motion (m s, color fill) and cloud water mixing ratio (0.5 g kg™, black). Vertical cross-sections values indicate the hail simulation LFC was smaller than the
spacing displayed as in Fig. 1, but for 1:14 simulation time (a,b) and 1:28 simulation time (c,d). graupel simulation LFC.
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ldealized CM1 simulations were analyzed to determine that a discrete propagation event and associated low-frequency
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gravity wave were generated by an increased latent cooling profile extending from the melting level to the surface
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lifting aloft. With less lifting concentrated in the lower levels, the LFC remained higher, and the discrete propagation
event was suppressed. In sum, discrete convective initiation can be controlled by the in-storm latent cooling profile.




