

The UK Met Office Space Weather Operations Centre (MOSWOC)

Gareth Powell, UK Met Office, 8th January 2019

MOSWOC - Introduction

• Based at Met Office HQ Exeter

- One of only three 24x7 centres:
 - MOSWOC, SWPC & 557th
- Only one outside USA
- In-house science & models

MOSWOC - Origins

Met Office The UK National Risk Register (NRR)

Catastroph	ic		Pandemic influenza
Major		Coastal flooding Widespread electricity failure	
Moderate	Major transport accidents Major industrial accidents	Effusive volcanic eruptions Emerging infectious diseases Inland flooding	Severe space weather Low temperatures & heavy snow Heatwaves Poor air quality events
Minor	Public disorder Severe wildfires	Animal diseases Drought	Explosive volcanic eruption Storms & gales
Impact		Disruptive industrial action	
Likelihood	Between 1 in 2,000	Between 1 in 200 and 1 in 20	Between 1 in 20 and 1 in 2

- Eyja volcanic eruption 2010
- Review of UK natural hazards
- Space Weather added 2011
- 4th highest risk!
- Forecast capability needed
- Met Office made risk owner:
 - 24 x 7 operations
 - IT infrastructure
 - Partnerships

© Crown copyright

MOSWOC - Capabilities

MOSWOC – Services – Key Product

Key Product:

Twice-daily 4-day forecast

Midday and midnight UTC

Flares, geomagnetism, radiation storms, electrons

'Technical' and Plain Language versions

Online or PDF by email

Met Office Space Weather Technical Forecast

Geomagnetic Storms:

Geomagnetic activity was quiet to unsettled over the last 24 hours. Over the next few days, it is likely that the southern coronal hole high speed stream will continue to brush with the Earth at times, with an associated CIR occasionally affecting the Earth. These waves in the CIR may increase the chances of G1 conditions at times, particularly during days 3 and 4. With this in mind, geomagnetic activity is expected to remain broadly quiet to unsettled with a chance of active conditions and a slight chance of G1 conditions on day 3 and day 4. [Entwire there – summary of past 24 hours, plus four-day forecast].

Loval	Past 24	(00-24 UTC)	(00-24 UTC)	Day 3 (00-24 UTC)	Day 4 (00-24 UTC) (%)	
Level	(Yes.No)	(%)	(%)	(%)		
G1 to G2	No	5	10	15	15	
63	No	1	1	5	5	
64	No	1	1	1	1	
65	No	1	1	1	1	
	G1toG2 G3 G4 G8	Level Hours (Yes.No) G1to G2 No G3 No G4 No G5 No	Level Hours (Yes/No) (%) G1to G2 No 5 G3 No 1 G4 No 1 G6 No 1	Level Hours (Yes.No) (%) (%) G1to G2 No 5 10 G3 No 1 1 G4 No 1 1 G5 No 1 1	Level Hours (Yes/No) (%) (%) (%) G1toG2 No 5 10 15 G3 No 1 1 5 G4 No 1 1 1 G5 No 1 1 1	

Geomagnetic Activity - Earthbound Coronal Mass Ejections: Nil

Figure 2: ENLIL model showing the coronal hole high speed stream brushing with Earth on Days 3 and 4.

Space Weather Advisor : Tony Burgess Tel: 01392 886112 Email: morwoc@metoffice.gov.uk

(C) Crown Copyright 2015 All Rights Reserved.

Issued 8 May 2014 at 12:0

FORECASTER OVERVIEW

Moderate Radio Blackout observed this morning. Further M-class flare likely over the next few days. Sudden impulse at ACE at 2130 UTC possible CME from 3rd May.

Solar activity is expected to remain moderate over the coming days the large sunsport groups AR2055 and AR2055 rotate around the disc and become more geo-effective. Geomagnetic activity is expected to stay start ACTIVE but then become generally QUET. There are a couple equatorial small coronal holes visible on the disk but their impact is thought to be minimal. With AR2051 now rotated completely out of low a proton wint seems unlikely now and electrons should stay a background values.

WARNINGS AND ALERTS

	Active alerts	Warnings
Geomagnetic	35	1
Radio blackout	*	R1 21:00 20/05 03:00 21/05
Proton flux > 100 MeV	\$1 11:23-now	1
Proton flux > 10 MeV		- 1
Kp	54	(2)
Kuk.		
Electrons		34°

SOLAR TIMELAPSE

Solar timelapse information

This is a timulape video from the Solar Dynamics Observatory (SDO) spacecrafts AM 109 channel. This channel highlights the outer atmosphere of the Sun - called the corona - as well as hot flare plasma. Hot active regions, solar flares, and coronal mass ejections will appear togist here. The dark areas - called coronal hotes - are places where wry title radiation is emitted, yet are the main source of solar wind particles.

When: 00:00-31:59 20:74 (2) Whene: Corona and hot faire glasma Wavelength: 193 angstroms (0.0000000193 m) = Extreme Ultraviolet Primary ions seen: 11 times ionized iron (Fe 30) Characteristic temperature: 125 million K (2.25 million R)

MOSWOC – Services – Impact Matrix

Satellite systems impact matrices:

- SATCOM (VHF to EHF) \bullet
- Terrestrial comms (VLF to EHF)
- **GNSS/GPS** \bullet
- **Regional products** \bullet

Met Sp	Met Office Space Weather Operations Centre (MOSWOC) **EXERCISE** **EXERCISE** Space Weather Impact on SATCOM Assessment																
Met Office Issue	ed:	30 Oc	tober	2015													
	000	Z to 0	600 Z]	0600) Z to 1	200 Z		1200) Z to 1	800 Z		1800	Z to 2	400 Z		
30 October 2015	VHF	UHF	SHF]	VHF	UHF	SHF		VHF	UHF	SHF		VHF	UHF	SHF		
High Latitude	U	U	М		U	U	М		U	U	М		U	U	М		
Mid latitude	М	М	S		М	М	S		М	М	S		U	U	м		
Equatorial	S	М	S		S	М	S		S	М	S		S	М	S		
progress (affecting high storms possible.	lats) an	d mine	or-mod	erate g	geoma	ignetic	400.7		strong	g/sever	e (G3-G	i4) geo	Frequent o	etic st	orms.	;, signal fade an	d/or
31 October 2015	VHE		SHE		VHE		SHE		M	Mode	rate imp	acts	nterferenc Docasiona	e are likel al or Interr	ly. nittent perio	ods of signal lo	ss, signal
High Latitude	U	U	M		U	U	М		S	Slight	degrada	ation	Isolated or periods of slight signal lo:		eiy. Inal loss, signal	fade and/o	
Mid latitude	U	U	М		U	U	М		F	Favou	rable		The enviro communic	nment is ations pr	unlikely to a oblems.	contribute to	
Equatorial	S	М	S		S	М	S					High	latitude	1 00	trat	hert	
Comments: High risk of t progress (affecting high storms possible during t	urther lats) an ne morr	R3 bla d stror ning.	ckouts ig/seve	contin ere (G3	ues, S G4) g	4 storn eomag	n in Inetic		-	1		Mid	latitude			A	
	000	IZ to 1	200 Z	1	1200) Z to 2	400 Z					Equ	atorial	A AL	Y	1 C	

	0001	0001 Z to 1200 Z 120) Z to 2400 Z		
01 November 2015	VHF	UHF	SHF		VHF	UHF	SHE		
High Latitude	М	М	S		М	М	S		
Mid latitude	М	М	S		М	М	S		
Equatorial	S	М	S		S	М	S		

Comments: R3 strong radio blackouts and G1-G2 minor storms a continuing risk resulting in slight to moderate signal degredation. S4 radiation storm should decrease to S3.

This forecast provides guidance on anticipated communications effectiveness for the stated geographic area and period.

For further space weather advice contact SpOCC Tel: 01494 494068/95221 X4068 This product is issued daily from MOSWOC and is non amendable.

Mid latitude **High** latitud

Feedback on this product would be welcomed and should be directed to SpOCC at Air-1GP-BMSpaceOpsCCGroup@mod.uk

www.metoffice.gov.uk

MOSWOC – Enlil for other planets!

Forecasts for Mercury, Venus and Mars also

Enlil output direct to ESA

Assessment of accuracy

Jupiter next..?

MOSWOC – Watches, Warnings and Alerts

Watches – hours to days

Geomagnetic Storm \geq G3

<u>Warnings – minutes to hours</u>

Geomagnetic Storm \geq G3

Proton storms \geq S1

Integrated electron counts

Alerts - occurring

Geomagnetic Alerts \geq G1

Radio Blackout Alerts \geq R2

Proton Storms \geq S1

www.metoffice.gov.uk

Alert issued by the Met Office at 16/05/2013 08:50:00Z

Notification Type: Radio Blackout Alert

Exceeded Threshold: R4

Threshold Class: X15

Start Date & Time: 16/05/2013 08:45:002

Data Source: GOES15

Forecaster Text: Solar Activity - An extreme radio flare has been detected impacting the UK. Potential impacts:

HF Radio: HF radio communication blackout is likely on most of the sunlit side of Earth for up to a few hours. HF radio contact lost during this time.

Navigation: Outages of low-frequency navigation signals cause increased error in positioning for one to two hours. Minor disruptions of GNSS (GPS) satellite navigation possible on the sunlit side of Earth.

(C) Crown copyright. Met Office

MOSWOC – Other Services

Routine:

- Sunspot Region Summary and Flare probability forecast
- Kp forecasts: Daily 3-day, and rolling 24-hour
- Teleconferences

Ad hoc:

- Significant Event Briefings
- Exercise Support
- 24 x 7 telephone support
- Space Weather Training

Met Office

Sunspot Region Summary

Observed Sunspot Regions:

Report issued four times a day (0300, 0900, 1500, 2100 UTC) from analysis of NASA SDO imagery and data from NOAA SWPC.

No.	Loc	Lo	Area	z	ш	NN	Mag Type	Growth	м	x	Р
2529	N11W52	342	900	Eki	13.0	10	Beta	Decrease	34	1	5
2532	N06E53	237	60	Cai	6.0	5	Beta	Increase	12	0	1
Tota	I Raw %					-			42	1	5
Total	Issued %	1							30	1	5

Comments: Region 2529 continues to show signs of decay, with almost all intermediate and trailer spots now very tenuous with only rudimentary penumbra at best. However this region recently (18/0029UTC) produced an M6.7 flare, the largest observed since 25th June 2015, so still has flare potential. Issued probabilities of M-class flares increased to 30% in light of this. Region 2532 has developed some intermediate spots since previous analysis, so is now classed Cai (from Cao).

Carrington 0-deg Longitude: at 18/0200 UTC = 290°

Space Weather Advisor: Gareth Powell Transmitted by the Met Office on 18 April 2016 at 12:00 UTC (C) Crown Copyright 2016. All Rights Reserved.

Kp / Kuk 24 hour Forecast

Forecast Issued on Friday, 12 September 2014 Time of Issue 02:34 Local

Kp/Kuk Level for next 24 hours:

0000	00-03	03-06	06-09	09-12	12-15	15-18	18-21	21-00
Кр	4	6	6	5	5	4	4	5
Kuk	4	6	6	5	5	4	4	5

MOSWOC - Customers

Scientific Institutes Government Partners Power **Business Energy and Industrial Strategy British Geological Survey (BGS)** National Grid EDF Energy Cabinet Office British Antarctic Survey (BAS) **Scottish Power UK Space Agency** Swedish Meteorological and Hydrographical Northern Powergrid Department for Transport Institute (SMHI) Ministry of Defence Finnish Meteorological Institute (FMI) Public Health England South Africa National Space Agency (SANSA) Regional and devolved governments European Space Agency (ESA) **Satellites Telecommunications** Transport Airbus National Air Traffic Services (NATS) British Telecom (BT) SES Civil Aviation Authority (CAA) Telefonica Avanti Maritime and Coastguard Agency OFCOM **Emergency Services** Finance Military Bank of England UK and Overseas

Potential Impacts on UK

- Greatest concern: Widespread loss of electricity supply
 - Urban areas hours to days
 - Remote areas weeks to months / rolling cuts
- Loss of satellite comms and GNSS services:
 - Transport aviation, shipping, rail
 - Financial transactions
 - Emergency services / military
 - Public reaction?

Loss of GNSS alone would cost UK approx. £1bn per day

Extreme space weather: impacts on engineered systems and infrastructure

MOSWOC - Partnerships

SPACE WEATHER PREDICTION CENTER NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

British Geological Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

British Antarctic Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

Government Office for Science

MOSWOC – The Future

MOSWOC - Summary

- Only 24x7 operational space weather forecasting outside of USA
- One of only 3 in the world
- From concept to full operations in 4 years
- Much capability in-house
- Utilise partnerships in UK and Internationally to develop science and operations
- Developing UK Space Weather Strategy
- Contribution towards UK, European and global preparedness for space weather

Any Questions?

gareth.powell@metoffice.gov.uk

moswoc@metoffice.gov.uk

http:/www.metoffice.gov.uk/space-weather

