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Recent developments in wind—wave
modelling leading to significant results

*Low amplitude waves -Thin layer, quasi-steady/unsteady analyses of
wind over waves with low slopes (H<<L),- turbulence in and above
surface layer —large effects (‘cats eyes’) in critical thin layers

*Non-linear Waves and turbulence with moderate slopes ; models :
LES >URANS > Organized (Inhomogeneous; modal) Eddy Simulation

*Wave group dynamics and Complex Physics for turbulent breaking
waves over rough surface, effects of spray/droplets
-> spectra and statistics



Eddy Structure ‘splats’
forces initial wave growth

Richard Scorer

(Hunt & Morrison 2000)
At the surface:

« wall-normal velocity blocked

« energy transferred to tangential
velocities

» local stagnation — point flow
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Numerical simulation of the mean velocity profile of
turbulent wind driven, low slope -shallow waves,
demonstrating the significance of critical layers near

and above surface shear layer , depends on cr/u®
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Energy transfer rate (Beta) vs. wave speed cr/u* with ci > 0 fo
different wavelengths-significant differences
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Figure 4. Solutions of S from Miles (blue. [1]), Janssen (green, [3]), WAVEWATCH (purple,

[51) and Equation 1 (red. [4]) for a 10 ms ~ wind and peak phase speeds ranging from 2-12 ms



Wind over wave group (SHD 2014, see Ayati
et al 2014)




Wind flow over WAVE GROUPS to show
additional drag effects of asymmetric critical
layer and separation, ci=0 (non growing waves)




Inviscid monochromatic unsteady wave growth-—
Integral analysis (M;L); layer analysis (BHC,SHD)

*ertical profiles of the in-phase and out of phase components of the
GROWING horizontal velocity perturbations ur, ui, as a function of c i
/u* , showing the singularity as ci /u* -> 0.
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Figure 3: Contour plots of the stream function for
difllezent values of Die wave age for e group. ’
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For both profiles, as thec wave age incrcascs, the cat-cve structurcs appear and grow. The
largest ones eventually move over the peaks ol the waves. As observed in our previous
study [3], the wave-age does have an influence on the size and position of the cat’s-eye
structures and so on the position of the critical layer as expected.



Cat’s Eye Structures for Growing Waves
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Cat’s Eye Structures for Wave Groups
z0 with new algorithm (left), z0 with fixed value (right)

Zo with new algorithm

Zo with fixed value

Note new research -> better estimates of energy into waves.



Calculating roughness Zo and Drag over waves

The drag coefficient is calculated iteratively following the method presented in [5]:
Given the wave speed and the Wind velocity at 10 m (U,,) we evaluate:

" 1) The wave induce motion Reynolds stress :7,, = p,, f;\{iu* U w2S (w, ui) dw
2kg
wu,

2)The roughness length: z, = 0.0028 meS(aJ,ui) eM(——)dw

10
Z0

2
3)The turbulent stress: 7, = p, (I(L)) ufo
(%0

2

4)The Friction velocity u, = [ p

2
Then the drag coefficient is calculated as Cp = ( - )

U1

Where S is the Philips spectrum

The parameter used for our parameter study 1s the wave age c¢/U*, ratio of wave celerity and
friction velocity.
Growing wave group:

The mesh is regenerated every 50 time steps, starting after 500 iterations.

The growth factor for each wave within the group is X<, ( For groups, K can be taken to

be k, k, ork,)and ¢c; = zp“ﬁ Where B is a function of U*, k , z0.

pwc’



Application to Hurricane (Gordon 2000)

Accurate Drag and z0 leads better forecast (intensity and path)
Eg: 2 way coupling (Z0 from new scheme) vs. 1-way coupling Z0 (empirical)
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Turbulence and 2-phase structure near centre of
Tropical Cyclones ( Lixiaio et al 2015)
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Turbulence wind spectra near surface in Tropical Cyclones -
measurements by Lixao, Kareem ,JH...(BLM 2015)Note large scale
shear/convection; small scale energy from spray /wave processes
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Prospects and communication of wave
research and practical applications

*Research in new theory, modelling, computational
methods, and new experimental measurement/facilities for
different wave-types

*Applications for improved operational forecasting for
atmosphere/ocean/engineering waves and flows

*Note models should incorporate characteristic features
and singularities (eg TC s) in these wave-turbulence-
multiphase —thermodynamic systems.
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