Rayleigh-Scatter Lidar for Characterizing the Near-Earth Space Environment

8 January 2019

Leda Sox, C. Valenta, V.B. Wickwar, J.P. Herron, J. Price, and W. K. Tobiska

Space Standards

Space Research

Space Operations

Georgia Research Tech Institute.

Motivation

Thermospheric and satellite drag models need *neutral density* and *temperature* measurements at roughly 120 km to give real-time boundary conditions.

Georgia | Research Tech ∦ Institute

Motivation

Thermospheric and satellite drag models need *neutral density* and *temperature* measurements at roughly 120 km to give real-time boundary conditions.

With hundreds of satellites being sent into low-Earth orbit each year, accurate thermospheric models are needed to better *predict drag, collisions, and reentry*. Thus improving our knowledge of orbital parameters for space debris and spacecraft from CubeSats to the ISS.

Georgia | Research Tech ∦ Institute

Motivation

Thermospheric and satellite drag models need *neutral density* and *temperature* measurements at roughly 120 km to give real-time boundary conditions.

With hundreds of satellites being sent into low-Earth orbit each year, accurate thermospheric models are needed to better *predict drag, collisions, and reentry*. Thus improving our knowledge of orbital parameters for space debris and spacecraft from CubeSats to the ISS.

High-power, large-aperture Rayleigh lidar systems can provide the fundamental thermospheric measurements for model boundary conditions

Georgia | Research Tech ∦ Institute

USU Rayleigh Lidar Temperatures from 1993-2004

Temperature climatology (below) [Herron, 2007]

90 75 180 80 Altitude [km] emperature 210 70 220 60 240 260 50 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Months

- Mid-latitude (42°N) noctilucent clouds (above) [Herron et al., 2007; Wickwar et al., 2002]
- 11-year temperature trends [Wynn & Wickwar, 2010]
- Gravity wave studies [Kafle, 2009]
- Mesospheric coolings in conjunction with sudden stratospheric warmings [Sox et al., 2016]

Neutral densities from stratosphere to thermosphere

- 11-year climatological relative densities normalized to NASA's MERRA2 densities at 45 km
 Can normalize to other datasets (e.g.
- Can normalize to othe JRA-55, ERA-20C)
- Percentage difference shows temporal and altitudinal variations
- In real-time could scale densities to data from collocated lower altitude lidar or other instruments

USU Rayleigh Lidar 2014-2015

- Pushed Rayleigh lidar temperature measurements into the thermosphere (~115 km) [Wickwar et al., 2016; Sox, 2016]
- Uncertainties much smaller than oscillations shown here
- Accounted for changing atmospheric composition (atomic oxygen) above 90 km

	1993-2004 Value	2014-2015 Value
Laser Power	24 W (18 W)	42 W
Telescope Area	0.44 m ²	4.9 m ²
Power-Aperture Product	3.6 W·m ² (2.7 W·m ²)	206 W ⁻ m ²
Top altitude in Temperature Profile	~95 km	~115 km

Georgia Research **Tech 🕅 Institute**

USU Rayleigh and Na Resonance Lidar Comparison [Sox et al., 2018]

- Throughout 2014-2015, direct comparisons were made to the collocated Na resonance lidar at USU
- Results show best agreement over 85-95 km, with larger differences above and below
- Same gravity wave structure in both datasets

Georgia ∦ Research Tech ∦ Institute.

RSL & Na Temperature Comparison for 140926

Rayleigh lidar for thermospheric model inputs

- With lessons-learned from USU Rayleigh lidar, extend neutral density and temperature measurements from 40 to 135 km
- Data ingested in real-time to satellite drag and thermospheric data assimilation models, for example:
 - Jacchia-Bowman 2008 [Bowman et al., 2008]
 - DRAGSTER [Crowley & Pilinski, 2017]
 - Others!

Georgia ∦ Research Tech ∦ Institute.

Toward a thermospheric lidar network

- GTRI has expertise in engineering deployable, ruggedized atmospheric lidar systems like the Integrated Atmospheric Characterization System [Roberts et al., 2014]
- Chain of such Rayleigh lidars located at a number of latitudes and longitudes can provide global coverage and complement existing techniques at large research facilities (e.g. Arecibo, Poker Flat, etc.)
- SET can provide thermospheric model and data assimilation expertise

Rayleigh Lidar Network

Take-Aways:

- > Group at USU has extended Rayleigh lidar-derived temperatures to 115 km and densities up to 95 km
- \succ GTRI can leverage atmospheric lidar engineering expertise to further extend USU's Rayleigh technique to 120 km or above, while assuring rugged, deployable systems that provide real-time data products

 \succ SET has extensive experience in using the lower BCs to improve thermospheric models

References

- Bowman, B., Tobiska, W. K., Marcos, F., Huang, C., Lin, C., & Burke, W. (2008). A New Empirical Thermospheric Density Model JB2008 Using New Solar and Geomagnetic Indices. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, (August). https://doi.org/10.2514/6.2008-6438
- Crowley, G., & Pilinski, M. (2017). Reducing conjunction analysis errors with an assimilative tool for satellite drag specification introduction : satellite drag and orbit prediction, (5), 1-17.
- Hauchecorne, A., & Chanin, M.-L. (1980). Density and Temperature Profiles Obtained by Lidar Between 35 and 70 km. Geophysical Research Letters. 7(8), 565-568.
- Herron, J. P. (2007). Rayleigh-Scatter Lidar Observations at USU's Atmospheric Lidar Observatory (Logan, UT) Temperature Climatology, Temperature Comparisons with MSIS, and Noctilucent Clouds.
- Herron, J. P., Wickwar, V. B., Espy, P. J., & Meriwether, J. W. (2007). Observations of a noctilucent cloud above Logan, Utah (41.7°N, 111.8°W) in 1995. Journal of Geophysical Research Atmospheres, 112(19), 1–12. https://doi.org/10.1029/2006JD007158
- Herron, J. P., Wickwar, V. B., Espy, P. J., & Meriwether, J. W. (2007). Observations of a noctilucent cloud above Logan, Utah (41.7°N, 111.8°W) in 1995. Journal of Geophysical Research Atmospheres, 112(19), 1–12. https://doi.org/10.1029/2006JD007158
- Kafle, D. N. (2009). Ravleigh-Lidar Observations of Mesospheric Gravity Wave Activity above Logan, Utah.
- Price, J. L., Wickwar, V. B., & Herron, J. P. (2018). Obtaining Absolute Neutral Densities in the Mesosphere Using Rayleigh-Scatter Lidar Observations with Reanalysis Models. In American Geophysical Union Fall Meeting.
- Roberts, D. W., Albers, K. R., Brown, E. A., Craney, T. A., Hosain, M. M., James, R. K., ... Whiteman, D. N. (2014). The integrated atmospheric characterization system (IACS). In Proc. SPIE 9080, Laser Radar Technology and Applications XIX: and Atmospheric Propogation XI. https://doi.org/10.1117/12.2050600

- Schunk, R. W., Scherliess, L., Sojka, J. J., Thompson, D. C., Anderson, D. N., Codrescu, M., ... Howe, B. M. (2004). Global Assimilation of Ionospheric Measurements (GAIM). Radio Science, 39(1), n/a-n/a. https://doi.org/10.1029/2002RS002794
- Sox, L. (2016). Rayleigh-Scatter Lidar Measurements of the Mesosphere and Thermosphere and their Connections to Sudden Stratospheric Warmings. Retrieved from http://digitalcommons.usu.edu/etd%0Ahttp://digitalcommons.usu.edu/etd/5227
- Sox, L., Wickwar, V. B., Fish, C. S., & Herron, J. P. (2016). Connection between the midlatitude mesosphere and sudden stratospheric warmings as measured by Rayleigh-scatter lidar. Journal of Geophysical Research: Atmospheres, 121(9), 4627–4636. https://doi.org/10.1002/2016JD025907
- Sox, L., Wickwar, V. B., Yuan, T., & Criddle, N. R. (2018). Simultaneous Rayleigh-Scatter and Sodium Resonance Lidar Temperature Comparisons in the Mesosphere-Lower Thermosphere. Journal of Geophysical Research: Atmospheres, 123(18), 10688–10706. https://doi.org/10.1029/2018JD029438
- Wickwar, V. B., Sox, L., Emerick, M. T., Herron, J. P., & Barton, D. L. (2016). Early Temperatures Observed with the Extremely Sensitive Rayleigh Lidar at Utah State University. EPJ Web of Conferences, 119, 13007. https://doi.org/10.1051/epjconf/201611913007
- Wickwar, V. B., Taylor, M. J., Herron, J. P., & Martineau, B. A. (2002). Visual and lidar observations of noctilucent clouds above Logan, Utah, at 41.7°N. Journal of Geophysical Research, 107(D7), 4054. https://doi.org/10.1029/2001JD001180
- Wynn, T. A., & Wickwar, V. B. (2010). Temperature trends and episodic changes of the middle atmosphere over Logan Utah with consideration to model specification. In Utah Space Grant Consortium Conference.

