

Quasi Linear Convective System (QLCS) tornado event for Shreveport/Bossier City, Louisiana and ARKLATEX region April 13-14 2018

Introduction/Abstract

The United States Air Force's (USAF) 26th Operational Weather Squadron (26 OWS) has hazardous weather warning responsibility for approximately 150 Department of Defense locations stretching across the southern United States. USAF weather forecasters face a daunting challenge in that most customers require a 10-30 minute lead time for warnings of tornadoes and/or funnel clouds. Improving the detection and forecast accuracy of these storms, while maintaining sufficient lead time, will increase the confidence of military decision makers to take the necessary actions in order to save lives and protect millions of dollars in aircraft and other high value assets. This poster will focus on means to improve USAF tornado warning lead times by offering enhanced detection techniques for QLCS tornado signatures via a case study of this recent event and past research of QLCS tornadoes.

Impacts

- 17 Tornadoes
- Property damage to homes and businesses
- Tree damage and power outages
- One fatality (2 year old child)

Heavy damage to Galilee Baptist Church in Shreveport (Source: KSLA News

- warm front
- 30-60 knots at 850mb
- CAPE 500-2000 J/kg
- Layer of dry or cool air in mid levels

Mesovortex Genesis (Alliss & Hoffman 2010)

- Strong vertical wind shear
- Coriolis forcing
- Moderate instability and CAPE

QLCS Tornado Percentage (Alliss & Hoffman 2010)

Typically spawn weaker tornadoes F0-F2

17 Tornadoes

Ray L. Christensen II USAF, 26th Operational Weather Squadron, Barksdale AFB, Louisiana

Past Research

QLCS Common in Spring (NWS Louisville KY) Usually form in warm sector ahead of cold front or along or just north of the

Strong speed shear 40-60 knots in lowest 2.5 - 5km (SFC-850 or 700 mb)

	Take Away	
	QLCS commonly produce mesovorticies	
8	Common in spring	
	Common at night or early morning hours Moderate CAPE >1500 and strong vertical shear >40kts	
	favorable parameters for QLCS	
	Use SRV and BV to identify rotation – it was clearly evider on both products in this case study	nt
	Use BR to identify bow echoes and inflow notches – both	
	evident in this case, but inflow notches are not always see Use SW after other products may show high values in	n
	turbulent area near rotation, but not always	
Ba	rksdale AFB 14 Apr 2018 Tornado Review (Christensen 20 Quasi Linear Convective System (QLCS))18)
	Take Away	
	 QLCS commonly produce mesovorticies Mesovorticies are small and compact and can cause areas of 	
	high wind damage and occasionally weak tornadoes	
	 Mesovorticies often form on northern side of apex (bulge) in 	
	bow echo, form from the ground up (use lowest elevation of BV & SRV products to look for rotation)	
	bow echo, form from the ground up (use lowest elevation of	
	bow echo, form from the ground up (use lowest elevation of BV & SRV products to look for rotation)	
	 bow echo, form from the ground up (use lowest elevation of BV & SRV products to look for rotation) Rarely have hook echo 	
	 bow echo, form from the ground up (use lowest elevation of BV & SRV products to look for rotation) Rarely have hook echo 	
	 bow echo, form from the ground up (use lowest elevation of BV & SRV products to look for rotation) Rarely have hook echo Area where tornado can form Apex of Bow Echo 	
	 bow echo, form from the ground up (use lowest elevation of BV & SRV products to look for rotation) Rarely have hook echo Area where tornado can form Apex of Bow Echo 	
	 bow echo, form from the ground up (use lowest elevation of BV & SRV products to look for rotation) Rarely have hook echo Area where tornado can form Apex of Bow Echo 	•

Trapp, R.J., S. A. Tessendorf, E.S. Godfrey, and H.E. Brooks, 2005: Tornadoes from Squall Lines and Bow Echoes. Part I: Climatological Distributions. Wea Forecasting, 131, 2779-2803.

Christensen R.L., 2018: Barksdale AFB Louisiana 14 April 2018 Tornado Review

Contact Information

Ray L Christensen II Ray.christensen.3@us.af.mil