Elements of a Scalable Infrastructure for Weather Forecaster Access to Joint Polar Satellite System (JPSS) Data

John D. Evans, Ph.D. Global Science & Technology, Inc. (GST) NOAA Joint Polar Satellite System Algorithm Management Project Lanham / Greenbelt, MD

99th American Meteorological Society Annual Meeting 15th Annual Symposium on New Generation Operational Environmental Satellite Systems 5B Special Session on JPSS Series Satellite System – Part II – Jan. 9, 2019

GLOBAL SCIENCE & TECHNOLOGY, INC.

NOAA

Joint Polar Satellite System

 Polar-orbiting satellites, S-NPP and NOAA-20 (a.k.a. JPSS-1)

Instruments: \bullet

- Visible/Infrared Imaging Radiometer Suite (VIIRS)
- Advanced Technology Microwave Sounder (ATMS)
- Cross-track Infrared Sounder (CrIS)
- Ozone Mapping and Profiler Suite (OMPS)
- Each satellite orbits 14x/day
- Each images the globe 2x/day
- Each produces 2TB/day globally
- Challenge: providing forecasters the data they need in a timely fashion

Most weather forecasters don't need all of that data

- They also don't need every single format / aggregation / variant of data
- No one forecasting office will need every data product.

	Sector	Daily VIIRS granules, per satellite	GB/day, per satellite *	NWS sites
	Alaska	128	74	5
	Pacific	216	124	3
	CONUS	78	45	128
D	uerto Rico	23	13	1
/	All sectors	368	212	

* For all products tagged by NWS as Key Performance Parameter (KPP), Critical, Supplemental High, or Suppl. Low

National Weather Service (NWS) sectors for JPSS VIIRS data subscriptions

CONUS

Alaska Dacific

JPSS satellites: daily CONUS overpasses

Each JPSS satellite sees (some of) CONUS about 10 times per day (78-80 VIIRS granules / day)

Near-real-time users: one overpass at a time

JPSS Enterprise Products: File size and structure

Which products can we afford to get from each overpass?

Global Science & Technology, Inc

<-- Higher priority

JPSS data products

Getting JPSS data products to AWIPS

NWS Satellite Broadcast Network (SBN)

- "Mainstream" path into AWIPS forecaster workstations
- 69+ Mbps total; 6 Mbps available for polar satellite data
- Everyone receives the same thing e.g., for JPSS:
 - VIIRS Near-Constant Contrast (NCC) Day-Night Band imagery for Alaska, Pacific, CONUS, Puerto Rico
 - NUCAPS soundings for Americas + Pacific & East Asia
 - VIIRS bands I1, I4, I5 imagery for Alaska region

Mbps needed for 10-minute delivery of model and satellite data SBN data substreams (Mbps / 10-minute aggregation) Stacked area chart over a 24-hour period (Not shown: NEXRAD radar data) 70.0 60.0 50.0 40.0 Mbps needed 30.0 20.0 10.0 0.0 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 time NationalBlend GOES-R 104 GFS HRRR VIIRS 16

AWIPS Data Delivery (AWIPS-DD)

On-demand services, connecting AWIPS to ESPDS Product Distribution and Access (PDA) and others

- Deliver only what users request
- Less need to pinpoint end-user needs
 - Less predictable usage patterns

AWIPS-DD & PDA use an asynchronous protocol

- Loosely based on the Open Geospatial Consortium Web Coverage Service (WCS) standard
- A fairly complex protocol, but has been shown to work with GOES-R data; AWIPS team is now adapting it to polar data
- Fetches discrete JPSS product files (no on-demand "tailoring")

Data, metadata, requests, and responses travel via OneNWSnet TCP/IP fiber-optic network

Now 100Mbps => a workable "bandwidth budget"

NOAA Direct Broadcast Real Time Network

Oirect Broadcast: Game-changing latency

Based on L. Gumley *et al.*, <u>NOAA Direct Broadcast Real Time Network Status</u>. WMO DBNet Coordination Group, October 23-25, 2018 / <u>http://www.wmo.int/pages/prog/sat/meetings/documents/DBNet-CG2_Doc_02-05_NOAA-DBRTN-Gumley.pdf</u>

13

GLOBAL SCIENCE & TECHNOLOGY, INC.

For comparison: latencies via Svalbard / McMurdo

Distribution of intervals between granule timestamp and product delivery time NOAA-20 and SNPP VIIRS KPPs (Imagery EDRs for Alaska) via Svalbard/McMurdo -> PDA -> NCF (Feb. 11, 2018)

Back 14

- Current technologies (esp. AWIPS-DD / PDA via OneNWSnet's 100 Mbps) will give forecasters timely access to the data products they need ... For now. Handling many more users and more data will require
- Reducing unnecessary data movement e.g.,
 - Produce and disseminate smaller ("thinned") versions of products
 - Subset data on demand by location, time, or parameter
- Limiting server loads e.g.,
 - Tiered Content Distribution Network
 - Conditional (or on-demand) processing
- Emphasizing simplicity, fault tolerance, interoperability

Reducing data movement:

Reducing data movement:

GLOBAL SCIENCE & TECHNOLOGY, INC.

Streamlined, interoperable Web services

Full OGC Web Coverage Service (WCS) capability would include on-demand selection

and subsetting by location, time, and field/parameter;
➢ Perhaps also Resampling, Aggregation, and Reprojection

This may further reduce data transfer volumes $(4x \sim 100x)$

Use of actual OGC WCS protocol would also bring

- Simpler client-server interaction
- Possibility of COTS solutions
- Interoperable & reusable service

Tiered Content Distribution Network

After each CONUS overpass of a JPSS satellite, up to ~100 sites may opt to fetch ~5-10 products from each of ~5 granules, within a short time.
▶ 5,000 concurrent file transfers!?

Instead of having all end users fetch products from a single site, maybe distribute to one or more tiers of "edge" servers – likely via Cloud Computing.

Limiting server loads:

Conditional / On-demand product generation

- Instead of running the full suite of algorithms on every data granule, maybe generate some lessfrequently used products only under certain circumstances, or only when requested by users.
- Cloud Computing would allow rapid and temporary "scale-out" of processing resources when needed.

JPSS algorithm run times and interdependencies

- Providing forecaster access to Joint Polar Satellite System data products is a significant challenge;
- However, given expected patterns of data supply and demand from polar orbiting satellites, and the new OneNWSnet bandwidth, PDA and AWIPS-Data Delivery will be able *(for now)* to provide forecasters with timely access to the JPSS data products they need.
- As data volumes and usage grow, we will need more scalable approaches to product generation, distribution, and access *for example:*
 - Reduce data movement via thinned products, improved data access services, etc.;
 - Use industry-standard protocols for simplicity, versatility, and resilience; and
 - Limit server loads via tiered content distribution and conditional processing.

Near-real-time users: Mb/s, not GB/day

Mbps needed for 10-minute delivery of top 20 JPSS and AMSR-2 products from each CONUS overpass over a 24-hour period

Method: Collected file sizes and file creation times for 44 SNPP and AMSR2 products of interest to AWIPS, intersecting the NWS CONUS region on July 18, 2018. Summed MB (received / sent) per 10-minute interval to infer Mbps needed to "clear the buffer" in each interval. Stacked-area chart above shows Mbps needed for the 20 largest products (~90% of daily data volume).

Findings: Total daily data volume for this region: 45GB / day; but bandwidth needs vary from 0 Mbps to over 58 Mbps (e.g., at 15:10 above).

Sidebar: WCS extensions under development

WCS GetCorridor extension (UK Met Office)

