ADVANCED CAPABILITIES OF STAR ALGORITHM PROCESSING FRAMEWORK (SAPF) VERSION 2.0

Alexander Ken², Arthur Russakoff², Brian Helgans³, Thomas King², Walter Wolf¹

¹NOAA/NESDIS/STAR, College Park, Maryland, 20740; ²IMG, Rockville, Maryland, 20852; ³GAMA-1 Technologies, Greenbelt, MD, 20770

INTRODUCTION

• The STAR Algorithm Processing Framework (SAPF) software is developed by the NOAA STAR Algorithm Scientific Software Integration and System Transition Team (ASSISTT) to facilitate and support transition of satellite remote sensing algorithms from research to operations.

• The SAPF is a single software framework with common interfaces for running and managing the precedence of large sets of enterprise algorithms.

• The SAPF is currently run within NOAA Data Exploitation (NDE) to support the operational JPSS 5-NPP and NOAA-20 VIIRS cloud, Cryosphere, aerosol, and land products.

• In addition, it supports all GOES-16 baseline and enterprise algorithms as well as production generation for all satellites.

• The ASSISTT Process Lifecycle and Algorithm Integration Team (PLAIT) integrates Level 2 product algorithms into the SAPF for both testing and operational implementation.

• SAPF version 1.0 is being replaced by version 2.0 in early 2020. Version 2.0 contains significant updates to support greater resource efficiency, scalability, improved run time performance, simplified configuration for users, as well as additional features such as parallel processing.

SOFTWARE TO SUPPORT ASSISTT R2O

• Multi-mission and Enterprise Research-To-Operations (R2O) support requires software infrastructure to be versatile, feature-rich, and easily extensible.

• Intense schedules for algorithm integration and validation require SAPF to be a time and cost efficient software integration platform.

• A growing number of supported algorithms requires a scalable architecture.

• Closely supporting research with frequent algorithm updates and change requests requires the framework to be agile and flexible.

• When used in an operational environment such as NDE, SAPF needs to be reliable, performant, and resource efficient.

• SAPF 2.0 is designed to answer the challenges of ASSISTT R2O.

INTEGRATION API

• The fully featured, native FORTRAN and C/C++ Application Programming Interface (API) allows seamless and easy integration of algorithms and other general software components with SAPF in a multi-language programming environment.

CONFIGURATION SYSTEM

• The XML based configuration allows efficient and user-friendly construction of multi-attribute data keys and effectively parameterizes and handles all data flows in the system.

• Supports and largely automates construction of any algorithm execution graphs, allowing for multi-satellite, multi-temporal, and otherwise varying configurations.

• Type-safe design for use with type-safe programming languages.

• A nearly layout-free design allows integrators to construct configuration algorithms in a flexible and user-friendly way.

• Supports XPath at the configuration file and at the API level. Any value added in configuration files can be directly accessed from algorithms via API.

• Supports XML variable substitution and access to environment variables, making the configuration highly parameterizable.

• Scoped lookup of variables and XML class elements achieves condensed structured data storage and very high usability of the configuration files.

• Advanced XML parser preprocessing directives, such as include, conditional, template, if, and for are helping to make configuration reusable, standardized, and compact.

• In general run configuration
 – SAPPLEMENT: 5-NPP, VIIRS, CHAMPIONS, 580000

• In Cloud Mask Configuration
 – <XSLT:include File=" XXX/XXX.xml"

• Currently used attributes: Satellite, Instrument, Resolution, Channel, [data] Name, Segment, Time Offset, Component (algorithm), Task.

• The architecture is highly scalable and flexible. It is universal with regard to ASSISTT requirements.

• 2-tier Data Cache implementation efficiently supports the in-process and multi-processor data flows.

• Data Cache is designed for easy integration with various COTS data bases and data cache technologies.

• Data entries can be presented in a form of JSON or XML headers and standardized value types and designed for easy data exchange with other information systems and for use in service-oriented architectures (Microservices, SOA).

DATA ARCHITECTURE

• Data Cache operates with multi-attribute key-value records
 – Key consists of standardizable searchable attributes
 – Value uses standardized base types

• Currently used attributes: Satellite, Instrument, Resolution, Channel, (data) Name, Segment, Time Offset, Component (algorithm), Task.

• The architecture is highly scalable and flexible. It is universal with regard to ASSISTT requirements.

• 2-tier Data Cache implementation efficiently supports the in-process and multi-processor data flows.

• Data Cache is designed for easy integration with various COTS data bases and data cache technologies.

• Data entries can be presented in a form of JSON or XML headers and standardized value types and designed for easy data exchange with other information systems and for use in service-oriented architectures (Microservices, SOA).

TASK SCHEDULING AND EXECUTION

• Tasks are algorithm configuration instances which are scheduled and executed via SAPF.

• Task scheduler builds an execution graph by analyzing and connecting inputs and capabilities of configured tasks, while utilizing the pull strategy.

• System inputs and outputs are also used as graph nodes.

• For example, an algorithm can be executed multiple times with different time-dependent parameters and inputs in a single temporal configuration.

• Data between Tasks is passed via Data Cache.

DATA IO SYSTEM

• Transfers data between Data Cache and external data sources.
 – Automatic: no programming required.
 – Flexible: configured as part of the overall SAPF XML configuration.

• Currently implemented: NetCDF input and output.

• Transfers data between NetCDF files and the SAPF 2.0 data cache.

• Configuration uses data bindings:
 – Supports NetCDF 3 and 4 standards (including groups and arrays of strings).
 – Can be used for 3rd party data import, as a file transform tool, and for Data Cache data exporting.

• Writes outputs in parallel when SAPF is used in parallel processing mode.

• Adding other data storage facilities and formats is being considered: HDF, BUFR.

WORK ORDER SYSTEM

• Allows for selective, resource-efficient computation.

• Integrates algorithms via API about requested outputs.

• Work Orders are automatically generated based on the configured algorithm inputs and capabilities, as well as on the Data IO System data bindings.

• Only tasks that have work orders are scheduled for execution.

SCENE AND DATA SEGMENTATION SYSTEM

• Supports padded, multi-dimensional, and multi-resolution data input and segmentation.

• Currently used dimensions: COLUMN, ROW, PLANES, TIME.

• API utilizes dimension superposition approach.

• Allows to choose input ROI and desired numbers of segments.

• Padding can be automatically calculated based on configured algorithm needs.

PARALLEL PROCESSING

• Allows to process data segments in parallel using multiple processes on the same computer or using multiple compute nodes in a cluster.

• Processes are dispatched in the following order: pre-processing, parallel segment processing, post-processing.

DATA TRANSFER SYSTEM

• Transfers data between Data Cache and external data sources.
 – Automatic: no programming required.
 – Flexible: configured as part of the overall SAPF XML configuration.

• Currently implemented: NetCDF input and output.

• Transfers data between NetCDF files and the SAPF 2.0 data cache.

• Configuration uses data bindings:
 – Supports NetCDF 3 and 4 standards (including groups and arrays of strings).
 – Can be used for 3rd party data import, as a file transform tool, and for Data Cache data exporting.

• Writes outputs in parallel when SAPF is used in parallel processing mode.

• Adding other data storage facilities and formats is being considered: HDF, BUFR.

FUTURE PLANS

• Support of an Enterprise Data Management infrastructure for Satellite and Environmental data.

• Integration with Microservices (SOA) based architecture, utilizing Docker and Kubernetes.

DATA ARCHITECTURE

• Integrate Algorithm Scientific Software Integration and System Transition Team (ASSISTT) supports the development of multi-attribute key-value records.

• Value uses standardized base types

• Data Cache operates with multi-attribute key-value records

DATA IO SYSTEM

• Transfers data between Data Cache and external data sources.
 – Automatic: no programming required.
 – Flexible: configured as part of the overall SAPF XML configuration.

• Currently implemented: NetCDF input and output.

• Transfers data between NetCDF files and the SAPF 2.0 data cache.

• Configuration uses data bindings:
 – Supports NetCDF 3 and 4 standards (including groups and arrays of strings).
 – Can be used for 3rd party data import, as a file transform tool, and for Data Cache data exporting.

• Writes outputs in parallel when SAPF is used in parallel processing mode.

• Adding other data storage facilities and formats is being considered: HDF, BUFR.

WORK ORDER SYSTEM

• Allows for selective, resource-efficient computation.

• Integrates algorithms via API about requested outputs.

• Work Orders are automatically generated based on the configured algorithm inputs and capabilities, as well as on the Data IO System data bindings.

• Only tasks that have work orders are scheduled for execution.

SCENE AND DATA SEGMENTATION SYSTEM

• Supports padded, multi-dimensional, and multi-resolution data input and segmentation.

• Currently used dimensions: COLUMN, ROW, PLANES, TIME.

• API utilizes dimension superposition approach.

• Allows to choose input ROI and desired numbers of segments.

• Padding can be automatically calculated based on configured algorithm needs.

PARALLEL PROCESSING

• Allows to process data segments in parallel using multiple processes on the same computer or using multiple compute nodes in a cluster.

• Processes are dispatched in the following order: pre-processing, parallel segment processing, post-processing.

DATA TRANSFER SYSTEM

• Transfers data between Data Cache and external data sources.
 – Automatic: no programming required.
 – Flexible: configured as part of the overall SAPF XML configuration.

• Currently implemented: NetCDF input and output.

• Transfers data between NetCDF files and the SAPF 2.0 data cache.

• Configuration uses data bindings:
 – Supports NetCDF 3 and 4 standards (including groups and arrays of strings).
 – Can be used for 3rd party data import, as a file transform tool, and for Data Cache data exporting.

• Writes outputs in parallel when SAPF is used in parallel processing mode.

• Adding other data storage facilities and formats is being considered: HDF, BUFR.

FUTURE PLANS

• Support of an Enterprise Data Management infrastructure for Satellite and Environmental data.

• Integration with Microservices (SOA) based architecture, utilizing Docker and Kubernetes.