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• Equilibrium for drop formed on solute aerosol 

• Original, solid core aerosol is dissolved 

• The solute is dilute, concentration <10 

Slowly Dissolving Aerosol Core  
• The solute saturation concentration and amount of solvent 

present determines how much of the aerosol dissolves 

• The remaining aerosol, the aerosol core, is assumed to stay at the 
center of the droplet during the dissolution process 

• Dissolved solute diffuses radially away from the core toward the 
droplet’s surface 

• As a result of diffusion, the solute has a concentration gradient 
within the droplet that varies radially outward from the core 
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Unmodified Kelvin Term Modified Solution Term 
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Water Activity Coefficient 

Solute Surface Concentration 
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[Asa-Awuku & Nenes, 2007] 

Equilibrium Saturation Ratio 

Air Parcel Model: Overview 

How does the changing aerosol composition 
affect cloud formation and growth processes? 

Fig 5. The parcel model was ran for all of the chemical species with varying maximum updraft speeds, wmax. With the exception of the 

first panel, the distribution is shown at the time immediately after all of the particles are finished activating. In all simulations, the initial 

conditions were: RH0=0.80, Z0=300 m, T0=15 deg C, and P0=919000 Pa. The CCN size distribution was kept constant with the 

following lognormal distribution: geometric standard deviation=1.8 , NCCN=100 particles cm-3 bin-1, and median=0.05 um.  

a.) H2SO4 
b.) Pinic Acid c.) 𝜶-Pinene  

Solute Mass 

Fig 4. Modified Köhler curves 

Fig 2. Traditional Köhler curve 

Fig 1. Changing aerosol source and composition for the eastern United States 

Fig 3. Slowly dissolving aerosol core with  

concentration gradient  

   Table 1: Percentage of activated droplets for the time corresponding to the subfigures in Fig 5. 

Compound b.)Wmax=25 cm/s c.) Wmax=100 cm/s d.) Wmax=250 cm/s e.) Wmax= 500 cm/s f.) Wmax=750 cm/s g) Wmax=1000 cm/s 

H2SO4 76.81% 95.48% 99.56% 100.00% 100.00% 100.00% 

(NH4)2SO4 69.92% 92.99% 98.98% 99.88% 100.00% 100.00% 

A-Pinene 8.30% 20.52% 39.76% 62.06% 75.44% 81.08% 

B-Pinene 8.32% 20.56% 39.81% 62.10% 75.48% 81.12% 

General SOA 8.32% 26.28% 47.14% 61.98% 75.29% 80.90% 

Pinic Acid 45.61% 74.20% 89.18% 97.03% 98.43% 99.40% 

Pinonic Acid 45.22% 73.88% 89.00% 96.97% 98.39% 99.38% 

Norpinonic 

Acid 

45.61% 74.20% 89.18% 97.03% 98.43% 100.00% 

• A set of ordinary differential equations for 
vertical velocity, ambient temperature, 
ambient pressure, saturation ratio, and 
equations for the growth 200 droplet bins 
are solved  

• Constraints for conservation of mass and 
conservation of energy are imposed.  

• Based on a droplet model developed by 
Feingold and Chuang [2002] and 
numerically integrated using the Variable 
Order Differential Equation (VODE) solver 

(while dissolving) 

(for completely dissolved aerosol) 
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[Lamb & Verlinde, 2011] 

Equilibrium Saturation Ratio 

Kelvin Term 
(Drop Curvature Effect) 

Solution Term 
(Raoult’s Law) 

We need to modify this equation for organics with low solubility 
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