
5.2 FROM GEMPAK TO METPY:
AN UPDATED TOOL FOR TEACHING SYNOPTIC METEOROLOGY (AND MUCH MORE)

Kevin H. Goebbert*, Ryan M. May**, John R. Leeman**

* Valparaiso University, Valparaiso, IN
** UCAR/Unidata, Boulder, CO

1. INTRODUCTION

A critical piece to the study of the atmosphere
is the ability to create and analyze weather maps.
For decades that primarily meant receiving the Na-
tional Weather Service (NWS) Digital Facsimile
(DIFAX) maps to analyze current conditions as well
as forecasts. In the 1980’s the GEneral Meteorolog-
ical PAckage (GEMPAK) was launched through the
NWS and made available to the university commu-
nity through the UCAR/Unidata program. GEMPAK
has been a primary tool for research and teaching
for the past 25 years or more, but in 2008 the NWS
announced it would cease development of the pro-
gram. Since that time, Unidata has continued to
support the legacy soft-ware making needed
changes and keeping the decoders updated as new
products become avail-able. However, a replace-
ment is needed as the long-term viability of main-
taining a software pack-age originally developed in
the 1980’s becomes increasingly difficult. Addition-
ally, GEMPAK is largely not used outside of the
academy limiting is usefulness for preparing stu-
dents for the modern workforce.

The question has lingered since 2008, what
should replace GEMPAK? At the time there were a
few options including Grads, NCL, and IDV, but
none of those fit the mold of a simplified syntax that
had a relatively robust functionality, that could batch
process data, produce publication quality graphics,
and have a feasible learning curve. For various rea-
sons, all of the “well-known” software packages of
the mid to late 2000s came up short. So, the search
has continued.

Around this same time, the Python programing
language was beginning to be adopted at a greater
rate within the scientific community writ large. The
adoption provided critical mass to develop tested,
fast, and robust modules to support the community
and their needs. In addition, these modules were
built by the community, for the community, and
available for free under various common open-
source licenses. This provided a cost-friendly op-
tion rather than pay for a license to the Matlab

program. Thus, there has been widening support
and adoption for Python modules such as Mat-
plotlib, Numpy, and SciPy within the scientific com-
munity. Quickly many disciplines developed mod-
ules that brought specific functionality to the Python
ecosystem that they needed in order to efficiently
do their work. However, the atmospheric science
community lagged and as such at a slower adoption
rate of Python, coupled with the fact that the com-
munity still has a large and active Fortran developer
community in numerical modelling and enjoyed nu-
merous data analysis and visualization packages
that were still running and supported at the time.

Over the last decade, the landscape of compu-
ting has continued to evolve. The GEMPAK data
format continues to be difficult to maintain but is still
being led by Unidata. The scientific Python commu-
nity has continued to grow, and the number of mod-
ules has grown substantially with even greater
adoption in the atmospheric science community. In
late 2015 Unidata adopted a fledgling Python mod-
ule called MetPy (May et al. 2017), which originally
came into existence to house code used for a cou-
ple of graduate students’ research and has been
actively developing the module with community
members over the past three years. In that time
there have been 21 of releases that have greatly
increased the functionality and usefulness for those
interested in synoptic-scale analyses similar to
those produced by the legacy software GEMPAK.

This extended abstract is intended to make the
case that the Scientific Python-stack and MetPy are
the long-term solution to the legacy GEMPAK soft-
ware package. Additionally, this paper includes ex-
amples of Python scripts that use the scientific-
stack, including MetPy, to create classic synoptic
meteorology graphics that can be used for teaching
and research. These examples require the use of
MetPy 0.10 or later.

2. Replacing GEMPAK

Since the NWS indicated that they were no
longer actively developing GEMPAK or maintaining
the decoders to put the vast amounts of meteoro-
logical data into the GEMPAK binary format, the
need for an alternative solution for creating synop-
tic-scale analyses has been needed. The require-
ments to replace GEMPAK:

* Corresponding Author: Dr. Kevin H. Goebbert,
Valparaiso University, 1809 Chapel Dr., Valparaiso,
IN 46383; email: kevin.goebbert@valpo.edu

i. Produce publication quality graphics
ii. Allow for batch operations
iii. Calculate common meteorological variables

such as absolute vorticity, isentropic levels,
and potential vorticity

iv. Have a reasonable learning curve
v. Ideally have a community development

mindset that is not tied specifically to institu-
tional (e.g., governmental) support for devel-
opment and maintenance.

This is not too tall of an order, but none of the avail-
able software programs/packages available when
GEMPAK development ceased adequately fulfilled
all of these requirements.

3. The Case for MetPy

Many of the other potential options for
GEMPAK alternatives are either based on compiled
programming languages or are strictly (or realisti-
cally) only a graphical user interface (GUI) program.
There are also very few programs that can produce
modern publication quality graphics in both raster
and vector forms. Programs based on compiled lan-
guages and libraries are notoriously difficult to com-
pile, maintain, and typically don’t have a substantial
user-development community. The prospects that
some of the already developed tools lasting another
10, 20, or 30+ years was unlikely and would only
push the proverbial can down the road for only a
little while longer.

In many respects, Python has been a game
changer within the scientific community. The base
language is relatively easy to learn and those with
a Fortran background will benefit from the mathe-
matical operations using the same syntactical struc-
ture. Being a full programming language, batch op-
erations are inherently a part of any scripting pro-
cess one could devise. Python also has a rich set
of community-maintained modules that make it pos-
sible to obtain many kinds of functionality. There
are also graphics tools allowing users to build their
own graphical interfaces if they desire.

Despite this, there have been historic limita-
tions to the base language that limited its use within
the larger scientific community for quite some time.
The limitations of the base language have largely
been overcome through the community-driven de-
velopment to increase speed and performance of
operations common to scientific users (e.g., array
operations). Additionally, the ecosystem allows for
robust testing, software tracking, and easy commu-
nity feedback to guide module development. It is
within this larger ecosystem that the MetPy module

began development and reached a tipping point in
early 2017 with a growing number of early adopters.

The MetPy module is a community driven de-
velopment led by software engineers at Unidata,
who have long led the development of atmospheric
science related software solutions, including
GEMPAK, LDM, and IDV. As of January 2019, the
calculation functionality available in MetPy or
through the Python scientific stack has become
quite robust. While full calculation parity to
GEMPAK has yet to be achieved, all of the most
commonly used calculation and plotting features
are available. There are also a number of instances
of functionality that goes beyond that which is avail-
able in many if not most of the legacy software pro-
grams.

Currently the package boasts a total of 82 cal-
culations that can be performed on grids and 17
specific sounding related calculations. There are 9
interpolation schemes ranging from Barnes and
Cressman to isentropic vertical interpolation. There
are methods to plot surface and upper-level station
observations, as well as skew-T log-p diagrams.
Additionally, coupled with Matplotlib, publication
quality graphics are straightforward to make.

Despite all of the calculations and plotting tech-
niques there are still a few key improvements/de-
velopments that are needed to fully replace
GEMPAK:

i. Simplified, declarative syntax
ii. Automated calculation solver
iii. Easy read access for surface and upper-air

observational data
iv. Full comparison to GEMPAK calculations

All of these improvements are already in the devel-
opment process and will increasingly make MetPy
the most viable successor to GEMPAK that we
have had in the past decade. Through the contin-
ued support of the atmospheric science community,
the module will be set to surpass the functionality of
GEMPAK in the near future.

In addition, there is already a wealth of training
materials available from Unidata to aid in adoption
of MetPy. The materials range from an introduction
to the Python language, to examples built into the
module itself, to training workshop materials, and
an extra examples gallery. If there are missing
pieces to training that is not covered by one of these
sources, issues can be submitted to their respective
GitHub repositories.

4. Conclusion

As the atmospheric science community is
about to start the third decade of the 21st century it
is time to evolve to the next generation of software
for data analysis and visualization. The MetPy mod-
ule delivers the best compromise of qualities
needed for a useful replacement for GEMPAK style
analyses, especially those of the synoptic-dynamic
genre. With continued community support (through
identifying and reporting issues and submitting pull
requests) and leadership from the Unidata pro-
gram, MetPy will be a long-term solution to creating
high-quality, publication ready graphics for decades
to come.

REFERENCES

May, Ryan M., Arms, S. C., Marsh, P., Bruning, E.
and Leeman, J. R., 2017: MetPy: A Python Pack-
age for Meteorological Data. Unidata, Accessed 18
December 2018. [Available online at
https://github.com/Unidata/MetPy.]
doi:10.5065/D6WW7G29.

APPENDIX: Example Scripts

Examples given in the appendix are also avail-
able as Python scripts and Jupyter notebooks at
https://github.com/kgoebber/synoptic_meteorology
and data for the examples are able to be down-
loaded from http://bergeron.valpo.edu/python/ex-
ample_data/.

i. 500-hPa Absolute Vorticity
ii. 300 K Isentropic Surface
iii. 250-hPa Baroclinic Potential Vorticity
iv. Skew-T Log-p Diagram
v. GOES 16 Infrared Satellite Image

500-hPa Absolute Vorticity Example

500hPa_Absolute_Vorticity_winds.py Page 1

"""
500 hPa Geopotential Heights, Absolute Vorticity, and Winds
===

Classic 500−hPa absolute vorticity plot using NAM analysis file.

This example uses example data from the NAM analysis for 12 UTC 31
October 2016 and uses xarray as the main read source with using MetPy to
calculate absolute vorticity and wind speed with geographi plotting
using Cartopy for a CONUS view of the 500−hPa geopotential heights,
absolute vorticity, and wind barbs.

"""

##
Import the needed modules.
#

from datetime import datetime

import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import metpy.calc as mpcalc
from metpy.units import units
import numpy as np
from scipy.ndimage import gaussian_filter
import xarray as xr

##
The following code reads the example data using the xarray open_dataset
function and prints the coordinate values that are associated with the
various variables contained within the file.
#

ds = xr.open_dataset('NAM_20161031_1200.nc')
print(ds)

##
Data Retrieval
−−−−−−−−−−−−−−
#
This code retrieves the necessary data from the file and completes some
smoothing of the geopotential height and wind fields using the SciPy
function gaussian_filter. A nicely formated valid time (vtime) variable
is also created.
#

Grab lat/lon values (NAM will be 2D)
lats = ds.lat.data
lons = ds.lon.data

Select and grab 500−hPa geopotential heights and wind components,
smooth with gaussian_filter
hght_500 = mpcalc.smooth_n_point(ds.Geopotential_height_isobaric.sel(
 isobaric=500).data[0], 9, 50)
uwnd_500 = mpcalc.smooth_n_point(ds['u−component_of_wind_isobaric'].sel(
 isobaric=500).data[0], 9, 50) * units('m/s')
vwnd_500 = mpcalc.smooth_n_point(ds['v−component_of_wind_isobaric'].sel(
 isobaric=500).data[0], 9, 50) * units('m/s')

Create a clean datetime object for plotting based on time of Geopotential heights
vtime = datetime.strptime(str(ds.time.data[0].astype('datetime64[ms]')),
 '%Y−%m−%dT%H:%M:%S.%f')

##
MetPy Absolute Vorticity Calculation
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#
This code first uses MetPy to calcualte the grid deltas (sign aware) to

500hPa_Absolute_Vorticity_winds.py Page 2

use for derivative calculations with the funtcion
``lat_lon_grid_deltas()`` and then calculates ``absolute_vorticity()``
using the wind components, grid deltas, and latitude values.
#

Calculate grid spacing that is sign aware to use in absolute vorticity calculation
dx, dy = mpcalc.lat_lon_grid_deltas(lons, lats)

Calculate absolute vorticity from MetPy function
avor_500 = mpcalc.absolute_vorticity(uwnd_500, vwnd_500, dx, dy,
 lats * units.degrees, dim_order='yx')

##
Map Creation
−−−−−−−−−−−−
#
This next set of code creates the plot and draws contours on a Lambert
Conformal map centered on −100 E longitude. The main view is over the
CONUS with geopotential heights contoured every 60 m and absolute
vorticity colorshaded (:math:`*10^5`).
#

Set up the projection that will be used for plotting
mapcrs = ccrs.LambertConformal(central_longitude=−100, central_latitude=35,
 standard_parallels=(30, 60))

Set up the projection of the data; if lat/lon then PlateCarree is what you want
datacrs = ccrs.PlateCarree()

Start the figure and create plot axes with proper projection
fig = plt.figure(1, figsize=(17, 16))
ax = plt.subplot(111, projection=mapcrs)
ax.set_extent([−130, −72, 20, 55], ccrs.PlateCarree())

Add geopolitical boundaries for map reference
ax.add_feature(cfeature.COASTLINE.with_scale('50m'))
ax.add_feature(cfeature.STATES.with_scale('50m'))

Absolute Vorticity colors
Use two different colormaps from matplotlib and combine into one color set
clevs_500_avor = list(range(−8, 1, 1))+list(range(8, 46, 1))
colors1 = plt.cm.YlOrRd(np.linspace(0, 1, 48))
colors2 = plt.cm.BuPu(np.linspace(0.5, 0.75, 8))
colors = np.vstack((colors2, (1, 1, 1, 1), colors1))

Plot absolute vorticity values (multiplying by 10^5 to scale appropriately)
cf = ax.contourf(lons, lats, avor_500*1e5, clevs_500_avor, colors=colors,
 extend='max', transform=datacrs)
plt.colorbar(cf, orientation='horizontal', pad=0, aspect=50, extendrect=True)

Plot 500−hPa Geopotential Heights in meters
clevs_500_hght = np.arange(0, 8000, 60)
cs = ax.contour(lons, lats, hght_500, clevs_500_hght, colors='black',
 transform=datacrs)
plt.clabel(cs, fmt='%d')

Set up a 2D slice to reduce the number of wind barbs plotted (every 20th)
wind_slice = (slice(None, None, 20), slice(None, None, 20))
ax.barbs(lons[wind_slice], lats[wind_slice],
 uwnd_500.to('kt')[wind_slice].m, vwnd_500[wind_slice].to('kt').m,
 pivot='middle', color='black', transform=datacrs)

Plot two titles, one on right and left side
plt.title('500−hPa NAM Geopotential Heights (m), Abs. Vorticity ($s^{−1}$),'
 ' and Wind Barbs (kt)', loc='left')
plt.title('Valid Time: {}'.format(vtime), loc='right')

plt.savefig('500_hPa_Abs_Vorticity.pdf', dpi=150, bbox_inches='tight')
plt.close()

300 K Isentropic Surface Example

Isentropic_Surfaces_RELH.py Page 1

"""
Isentropic Analysis, Relative Humidity, and Winds
===

Classic isentropic level plot using GFS analysis file.

This example uses example data from the GFS analysis for 12 UTC 31
October 2016 and uses xarray as the main read source with using MetPy to
calculate the isentropic levels and wind speed with geographic plotting
using Cartopy for a CONUS view of the 300 K isentropic surface with
relative humidity, and wind barbs.

"""

from datetime import datetime

import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import metpy.calc as mpcalc
from metpy.units import units
import numpy as np
from scipy.ndimage import gaussian_filter
import xarray as xr

##
The following code reads the example data using the xarray open_dataset
function and prints the coordinate values that are associated with the
various variables contained within the file.
#

ds = xr.open_dataset('GFS_20101026_1200.nc')
print(ds)

##
Data Retrieval
−−−−−−−−−−−−−−
#
This code retrieves the necessary data from the file and completes some
smoothing of the geopotential height and wind fields using the SciPy
function gaussian_filter. A nicely formated valid time (vtime) variable
is also created.
#

Grab lat/lon values (GFS will be 1D)
lat = ds.lat.data
lon = ds.lon.data

Set subset slice for the geographic extent of data to limit download
lon_slice = slice(400,701)
lat_slice = slice(10,160)

Subset lat/lon values
lons = lon[lon_slice]
lats = lat[lat_slice]

Grab the pressure levels and select the data to be imported
Need all pressure levels for Temperatures, U and V Wind, and Rel. Humidity
Smooth with the gaussian filter from scipy
pres = ds['isobaric3'].data[:] * units('Pa')
tmpk_var = ds['Temperature_isobaric'].data[0, :, lat_slice, lon_slice]
tmpk = gaussian_filter(tmpk_var, sigma=1.0) * units.K
thta = mpcalc.potential_temperature(pres[:, None, None], tmpk)

uwnd_var = ds['u−component_of_wind_isobaric'].data[0, :, lat_slice, lon_slice]
vwnd_var = ds['v−component_of_wind_isobaric'].data[0, :, lat_slice, lon_slice]
uwnd = gaussian_filter(uwnd_var, sigma=1.0) * units('m/s')
vwnd = gaussian_filter(vwnd_var, sigma=1.0) * units('m/s')

relh_var = ds['Relative_humidity_isobaric'].data[0, :, lat_slice, lon_slice]
relh = gaussian_filter(relh_var, sigma=1.0) * units('percent')

Isentropic_Surfaces_RELH.py Page 2

Need to do some work to add in missing pressure level for
Relative Humidity Data − missing 2000 Pa level (index value 1 in tmpk array)
relh2 = np.empty(tmpk.shape)
missing_level = np.empty(relh.shape[1:])
missing_level.fill(np.nan)
relh2[0] = relh[0]
relh2[1] = missing_level
relh2[2:] = relh[1:]

Create a clean datetime object for plotting based on time of Geopotential heights
vtime = datetime.strptime(str(ds.time.data[0].astype('datetime64[ms]')),
 '%Y−%m−%dT%H:%M:%S.%f')

##
Use MetPy to calcualte multiple isentropic levels from 280 − 300 K
#

isentlevs = list(range(280,331,2)) * units.K
print(isentlevs)
isent_anal = mpcalc.isentropic_interpolation(isentlevs,
 pres,
 tmpk,
 relh2,
 uwnd,
 vwnd)

Isolate isentropic variables after interpolation convert winds to knots
isentprs, isentrelh, isentu, isentv = isent_anal
isentu.ito('kt')
isentv.ito('kt')

Determine the index value of 300 K
ilev = list(isentlevs.m).index(300)

##
Map Creation
−−−−−−−−−−−−
#
This next set of code creates the plot and draws contours on a Lambert
Conformal map centered on −100 E longitude. The main view is over the
CONUS with isentropic map with pressure contoured every 50 hPa and
relative humidity colorshaded above 70%.
#

Set up the projection that will be used for plotting
mapcrs = ccrs.LambertConformal(central_longitude=−100, central_latitude=35,
 standard_parallels=(30, 60))

Set up the projection of the data; if lat/lon then PlateCarree is what you want
datacrs = ccrs.PlateCarree()

Start the figure and create plot axes with proper projection
fig = plt.figure(1, figsize=(14,12))
ax = plt.subplot(111, projection=mapcrs)
ax.set_extent([−130, −72, 20, 55], ccrs.PlateCarree())

Add geopolitical boundaries for map reference
ax.add_feature(cfeature.COASTLINE.with_scale('50m'))
ax.add_feature(cfeature.STATES.with_scale('50m'))

Plot colorfilled RH >= 70%
clevs_relh = np.arange(70, 101, 1)
cf = ax.contourf(lons, lats, isentrelh[ilev], clevs_relh, cmap=plt.cm.Greens,
 norm=plt.Normalize(70, 110), transform=datacrs)
plt.colorbar(cf, orientation='horizontal', pad=0, aspect=50)

Plot isobars every 50 hPa
clevs_pres = np.arange(0, 1100, 50)
cs1 = ax.contour(lons, lats, mpcalc.smooth_n_point(isentprs[ilev], 9), clevs_pres,
 colors='black', transform=datacrs)

Isentropic_Surfaces_RELH.py Page 3

plt.clabel(cs1, fmt='%d', fontsize='large')

Plot wind barbs
ax.barbs(lons, lats, isentu[ilev].m, isentv[ilev].m, pivot='middle',
 color='black', regrid_shape=20, transform=datacrs)

Plot some nice titles on the left and right side of the top of the image
plt.title('{}K GFS Pressure (hPa), Rel. Humidity (%),'
 ' and Wind Barbs (kt)'.format(isentlevs[ilev].m), loc='left')
plt.title('Valid Time: {}'.format(vtime), loc='right')

plt.savefig('300_K_Isentropic.png', dpi=150, bbox_inches='tight')
plt.close()

250-hPa Baroclinic Potential Vorticity Example

PV_baroclinic_isobaric.py Page 1

"""
Baroclinic Potential Vorticity Analysis, Divergence, and Winds
==

Classic baroclinic potential vorticity plot at 250 hPa using GFS
analysis file.

This example uses example data from the GFS analysis for 12 UTC 31
October 2016 and uses xarray as the main read source with using MetPy to
calculate the baroclinic potential vorticity, divergence and wind speed
with geographic plotting using Cartopy for a CONUS view of the 250−hPa
surface with divergence and wind barbs.

"""

from datetime import datetime

import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import metpy.calc as mpcalc
from metpy.units import units
import numpy as np
from scipy.ndimage import gaussian_filter
import xarray as xr

##
The following code reads the example data using the xarray open_dataset
function and prints the coordinate values that are associated with the
various variables contained within the file.
#

ds = xr.open_dataset('GFS_20101026_1200.nc')
print(ds)

##
Data Retrieval
−−−−−−−−−−−−−−
#
This code retrieves the necessary data from the file and completes some
smoothing of the temperature, and wind fields using the SciPy function
gaussian_filter. A nicely formated valid time (vtime) variable is also
created.
#

Grab lat/lon values (GFS will be 1D)
lat = ds.lat.data
lon = ds.lon.data

Set subset slice for the geographic extent of data to limit download
lon_slice = slice(400,701)
lat_slice = slice(10,160)

Subset lat/lon values
lons = lon[lon_slice]
lats = lat[lat_slice]

Grab the pressure levels and select the data to be imported
Need all pressure levels for Temperatures, U and V Wind, and Rel. Humidity
Smooth with the gaussian filter from scipy
pres = ds['isobaric3'].data[:] * units('Pa')

tmpk_var = ds['Temperature_isobaric'].data[0, :, lat_slice, lon_slice]
tmpk = gaussian_filter(tmpk_var, sigma=1.0) * units.K
thta = mpcalc.potential_temperature(pres[:, None, None], tmpk)

uwnd_var = ds['u−component_of_wind_isobaric'].data[0, :, lat_slice, lon_slice]
vwnd_var = ds['v−component_of_wind_isobaric'].data[0, :, lat_slice, lon_slice]
uwnd = gaussian_filter(uwnd_var, sigma=1.0) * units('m/s')
vwnd = gaussian_filter(vwnd_var, sigma=1.0) * units('m/s')

PV_baroclinic_isobaric.py Page 2

Create a clean datetime object for plotting based on time of Geopotential heights
vtime = datetime.strptime(str(ds.time.data[0].astype('datetime64[ms]')),
 '%Y−%m−%dT%H:%M:%S.%f')

##
Use MetPy to compute the baroclinic potential vorticity on all isobaric
levels and other variables
#

Compute dx and dy spacing for use in vorticity calculation
dx, dy = mpcalc.lat_lon_grid_deltas(lons, lats)

Comput the PV on all isobaric surfaces
pv = mpcalc.potential_vorticity_baroclinic(thta, pres[:, None, None], uwnd, vwnd,
 dx[None, :, :], dy[None, :, :],
 lats[None, :, None] * units('degrees'))

Use MetPy to compute the divergence on the pressure surfaces
div = mpcalc.divergence(uwnd, vwnd, dx[None, :, :], dy[None, :, :], dim_order='yx')

Find the index value for the 250−hPa surface
i250 = list(pres.m).index(((250 * units('hPa')).to(pres.units)).m)

##
Map Creation
−−−−−−−−−−−−
#
This next set of code creates the plot and draws contours on a Lambert
Conformal map centered on −100 E longitude. The main view is over the
CONUS with isentropic map with pressure contoured every 50 hPa and
relative humidity colorshaded above 70%.
#

Set up the projection that will be used for plotting
mapcrs = ccrs.LambertConformal(central_longitude=−100, central_latitude=35,
 standard_parallels=(30, 60))

Set up the projection of the data; if lat/lon then PlateCarree is what you want
datacrs = ccrs.PlateCarree()

Start the figure and create plot axes with proper projection
fig = plt.figure(1, figsize=(14,12))
ax = plt.subplot(111, projection=mapcrs)
ax.set_extent([−130, −72, 20, 55], ccrs.PlateCarree())

Add geopolitical boundaries for map reference
ax.add_feature(cfeature.COASTLINE.with_scale('50m'))
ax.add_feature(cfeature.STATES.with_scale('50m'))

Plot the contours of PV at 250 hPa, scaling 10^6 every 1 PVU
clevs_pv = np.arange(0, 25, 1)
cs1 = ax.contour(lons, lats, pv[i250]*1e6, clevs_pv, colors='black',
 transform=datacrs)
plt.clabel(cs1, fmt='%d', fontsize='large')

Plot the colorfill of divergence, scaled 10^5 every 1 s^1
clevs_div = np.arange(−15, 16, 1)
cs1 = ax.contourf(lons, lats, div[i250]*1e5, clevs_div, cmap=plt.cm.PuOr,
 extend='both', transform=datacrs)
plt.colorbar(cs1, orientation='horizontal', pad=0, aspect=50, extendrect=True)

Plot the wind barbs at 250 hPa
ax.barbs(lons, lats, uwnd[i250].to('kt').m, vwnd[i250].to('kt').m, pivot='middle',
 color='black', regrid_shape=20, transform=datacrs)

Plot some titles to tell people what is on the map
plt.title('250−hPa GFS PV (PVU), Divergence (s$^{−1}$),'
 ' and Wind Barbs (kt)', loc='left')
plt.title('Valid Time: {}'.format(vtime), loc='right')

plt.savefig('250_hPa_PV_Analysis.png', dpi=150, bbox_inches='tight')

PV_baroclinic_isobaric.py Page 3

plt.close()

Skew-T Log-p Diagram Example

SkewT_Example.py Page 1

"""
Skew−T Analysis
===============

Classic skew−T/log−p plot using data from University of Wyoming.

This example uses example data from the University of Wyoming sounding
archive for 12 UTC 31 October 2016 for Minneapolis, MN (MPX) and uses
MetPy to plot the classic skew−T with Temperature, Dewpoint, and wind
barbs.

"""

from datetime import datetime

import matplotlib.pyplot as plt
import metpy.calc as mpcalc
from metpy.plots import SkewT
from metpy.units import units
import numpy as np
from siphon.simplewebservice.wyoming import WyomingUpperAir

##
Set time using a datetime object and station as variables
#

dt = datetime(2016, 10, 26, 12)
station = 'MPX'

##
Grad Remote Data
−−−−−−−−−−−−−−−−
#
This requires an internet connection to access the sounding data from a
remote server at the University of Wyoming.
#

df = WyomingUpperAir.request_data(dt, station)

##
Isolate variables and attach units
#

p = df.pressure.values * units(df.units['pressure'])
T = df.temperature.values * units(df.units['temperature'])
Td = df.dewpoint.values * units(df.units['dewpoint'])
u = df.u_wind.values * units(df.units['u_wind'])
v = df.v_wind.values * units(df.units['v_wind'])

Set index value for 100 hPa level
This will help with plotting the final skew−T
Defaults to last value in array if 100 hPa not in data
try:
 ip100 = list(p.m).index(100)+1
except:
 ip100 = −1

##
Make Skew−T Plot
−−−−−−−−−−−−−−−−
#
The code below makes a basic skew−T plot using the MetPy plot module
that contains a SkewT class.
#

Change default to be better for skew−T
plt.rcParams['figure.figsize'] = (9, 9)

Initiate the skew−T plot type from MetPy class loaded earlier

SkewT_Example.py Page 2

skew = SkewT()

Plot the data using normal plotting functions, in this case using
log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')
skew.plot(p, Td, 'g')
skew.plot_barbs(p[:ip100:3], u[:ip100:3], v[:ip100:3])

Set some appropriate axes limits for x and y
skew.ax.set_xlim(−40, 40)
skew.ax.set_ylim(1000, 100)

Add the relevant special lines to plot throughout the figure
skew.plot_dry_adiabats(t0=np.arange(233,533,10) * units.K,
 alpha=0.25, color='orangered')
skew.plot_moist_adiabats(t0=np.arange(233,400,5) * units.K,
 alpha=0.25, color='tab:green')
skew.plot_mixing_lines(p=np.arange(1000, 99, −20) * units.hPa,
 linestyle='dotted', color='tab:blue')

Add some descriptive titles
plt.title('{} Sounding'.format(station), loc='left')
plt.title('Valid Time: {}'.format(dt), loc='right')

plt.savefig('{0}_{1:%Y%m%d%H}_SkewT_Analysis.png'.format(station, dt),
 dpi=150, bbox_inches='tight')
plt.close()

GOES 16 Infrared Satellite Imagery Example

GOES_16_Satellite_Analysis.py Page 1

"""
Satellite Analysis
==================

Classic GOES 16 Infrared Satelite Analysis with colormap.

This example uses example data from the GOES 16 to plot the IR imagery
with a colortable for the most current data accessed using Siphon. The
plotting is completed with the help of MetPy and geographic plotting
using Cartopy for a CONUS view.

"""

from datetime import datetime

import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import metpy.calc as mpcalc
from metpy.plots import colortables
from metpy.units import units
import numpy as np
from scipy.ndimage import gaussian_filter
from siphon.catalog import TDSCatalog
import xarray as xr
plt.style.use('dark_background')

##
Grab Data
−−−−−−−−−
#
The following code will access data from a THREDDS server at Unidata
that contains GOES 16 data. Through siphon we can access the data using
an xarray format.
#

Set channel number (1−16)
Channels 1−6 (Visible)
Channel 7 (daylight/nighttime band)
Channels 8−10 (Water Vapor)
Channels 11−16 (IR)

Have computer give current time
date = datetime.utcnow()

Select a channel for viewing
channel = 14
sector = 'CONUS'

#https://thredds.ucar.edu/thredds/catalog/satellite/goes16/GOES16/CONUS/Channel14/cu
rrent/catalog.html
base_url = 'http://thredds.unidata.ucar.edu/thredds/catalog/satellite/goes16/GOES16/
'
date_portion = '{0}/Channel{1:02d}/{2:%Y%m%d}/'.format(sector, channel, date)
current_goes16 = TDSCatalog(base_url+date_portion+'catalog.xml')

Use the latest file through the 0 index value
latest_file = current_goes16.datasets[0]

Actually grab the data
ds = latest_file.remote_access(use_xarray=True)

Use MetPy parsing to help gather projection information
sat_data = ds.metpy.parse_cf('Sectorized_CMI')

Set projection based on info from file
proj = sat_data.metpy.cartopy_crs

Get projection x and y data for plotting
x = sat_data.metpy.x
y = sat_data.metpy.y

GOES_16_Satellite_Analysis.py Page 2

Have file tell me the central wavelength of the data
wavelength = ds.central_wavelength

##
Plot Figure
−−−−−−−−−−−
#
The following code will plot the satellite image channel using a
colormap from MetPy
#

Start the figre
fig = plt.figure(figsize=(18, 9))
ax = fig.add_subplot(111, projection=proj)

Use a colortable/colormap available from MetPy
ir_norm, ir_cmap = colortables.get_with_range('ir_drgb_r', 190, 350)

Plot the data using imshow
im = ax.imshow(sat_data, origin='upper', cmap=ir_cmap, norm=ir_norm,
 extent=(x.min(), x.max(), y.min(), y.max()))
plt.colorbar(im, pad=0, aspect=50, ticks=range(190,351,10))

Add country borders and states (use your favorite linestyle!)
ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidth=1.5,
 edgecolor='black')
ax.add_feature(cfeature.BORDERS.with_scale('50m'), linewidth=1,
 edgecolor='black')
ax.add_feature(cfeature.STATES.with_scale('50m'), linestyle=':',
 edgecolor='black')

Add appropriate titles
timestamp = datetime.strptime(ds.start_date_time, '%Y%j%H%M%S')
plt.title('Valid Time: {}'.format(timestamp), loc='right')
plt.title('GOES−16 Channel {} {:.1f}um'.format(channel, wavelength), loc='left')

plt.savefig('IR_Satellite.png', dpi=150, bbox_inches='tight')
plt.close()

