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ABSTRCT 
 
A precipitation classification approach using support vector machine method is developed and tested on a C 
band polarimetric radar located in Taiwan (RCMK). Different from some existing classification methods that apply 
a whole volume radar data, the newly developed approach utilizes the unblocked polarimetric radar data from the 
lowest tilt to classify precipitation echoes into stratiform or convective types. In this approach, radar variables of 
reflectivity, differential reflectivity, the standard deviation of reflectivity, and the separation index calculated from 
the lowest tilt are utilized as the inputs, and the feature vector and weight vector in the support vector machine 
were optimized using well-classified training data. The proposed approach was tested with multiple precipitation 
events that include a mixture of widespread stratiform and convective, an isolated convective, and tropical 
convective precipitation. The results were compared with two existing approaches. The performance evaluation 
shows the proposed work can accurately identify the convective cells from stratiform precipitations with only the 
radar data from the lowest scanning tilt. 
 
1. Introduction 
 
Convective and stratiform precipitation systems exhibit 
significant differences in precipitation growth 
mechanisms and thermodynamic structures (e.g., 
Houghton 1968, Houze 1993, Houze 1997). Generally, 
convective precipitations are associated with strong 
and small areal vertical air motion (> 5 ms-1), while 
stratiform types are associated with weak and 
mesoscale updrafts/downdrafts (< 3 ms-1) (Penide et 
al. 2013).  Moreover, a convective system generally 
consists of large and dense hydrometeors, which 
produces large high rainfall rate (R); stratiform 
precipitation on the other hand is associated with 
relative low R (Anagnostou 2004). Accurately 
separating convective type precipitations from 
stratiform not only can promote the understanding of 
the cloud physics but also can enhance the 
performance of quantitative precipitation estimation 
(QPE) approaches. Numerous precipitation 
classification algorithms using ground in situ 
measurements or satellite were developed during the 
past four decades (e.g., Leary and Houze 1979; Tokay 
and Short 1996; Adler and Negri 1988; Hong et al. 
1999).  
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Ground-based weather radar, such as Weather 
Surveillance Radar, 1988, Doppler (WSR-88D), can be 
used in severe weather detection, hydrometeor 
classification, QPE, and other applications. 
Precipitation classification methods were developed 
using single- or dual-polarization radars. For single-
polarization radar, since only three moment variables 
in terms of reflectivity (Z), radial velocity (𝑣" ), and 
spectrum width ( 𝜎$ ) are available, the developed 
classification algorithms mainly rely on reflectivity and 
variables derived from it (e.g., Steiner et al. 1995, 
hereafter SHY95, Biggerstaff and Listemaa 2000; 
Anagnostou 2004, Yang et al. 2013, Powell et al. 
2016).  For example, based on the study from Steiner 
and Houze (1993), SHY95 proposed a widely used 
separation approach that utilizes the texture features 
derived from radar reflectivity field. Any grid point in Z 
field with a value larger than 40 dBZ, or exceeds the 
average intensity taken over the surrounding 
background by specified thresholds is identified as the 
convective center. Those grid points surrounding the 
convective centers are classified as convective area, 
and far regions are classified as stratiform. During their 
experiments, Penide et al. (2013) found that SHY95 
misclassified those isolated points embedded within 
stratiform precipitation and associated with low cloud-
top height. Powell et al. (2016) modified the approach 
proposed by SHY95, and the new approach more 
effectively identifies shallow convection embedded 
within large stratiform regions and correctly identifies 



isolated shallow and weak convections. A neural 
network convective-stratiform classification algorithm 
was developed by Anagnostou (2004), which utilizes 
six variables as inputs including storm height, 
reflectivity, vertical gradient of reflectivity, and other 
threes. Similar variables are also used in the fuzzy 
logic-based classification approach proposed by Yang 
et al. (2013). In these two approaches, a full volume of 
radar reflectivity field is needed to calculate variables 
such as the product of rain column top height reflectivity 
value at 2 km, and the vertically integrated liquid water 
content. However, according to U.S. radar operations 
centers (ROC), the WSR-88D radars are operated 
without updating a complete volume during each 
volume scan especially during precipitation events. In 
order to early capture the storm development for 
weather forecast and to obtain a more accurate 
precipitation estimation, new radar scanning schemes 
are designed to reorganize the updating order for a 
high frequency in low elevation heights and a less 
frequency for a higher height. These new schemes 
include, for example, the automated volume scan 
evaluation and termination (AVSET), supplemental 
adaptive intra-volume low-level scan (SAILS), the 
multiple elevation scan option for SAILS, and the mid-
volume rescan of low-level elevations (MRLE). In the 
real-time operation, those classification results cannot 
be updated in a high frequency when data from a high 
tile is not available in time.   
 
Polarimetric radars transmit and receive 
electromagnetic waves along the horizontal and 
vertical directions, and therefore can provide extra 
information about hydrometer’s size, shape, species, 
and orientation. A C-band polarimetric radar approach 
was developed by Bringi et al. 2009 (hereafter BAL), 
which classifies the precipitation into stratiform, 
convective and transition regions based on retrieved 
drop size distribution (DSD) characteristics.  However, 
the performance of DSD-based approach depends on 
the environment regime (Thompson et al. 2015). 
Strong stratiform echoes might have similar DSDs to 
weak convective echoes, and lead to wrong 
classification results (Powell et al. 2016). 
 
In this work, a novel precipitation classification 
algorithm was developed and tested on a C-band 
polarimetric radar located in Taiwan. This method 
classifies precipitations into stratiform and convective 
types using a support vector machine (SVM) method. 
Different from some existing classification approaches 
that utilize the whole volume of radar data, this new 
approach uses the unblocked data from the lowest 
scanning tilt. All the parameters used in the current 
approach are trained from typical convective and 
stratiform precipitation events. This paper is organized 
as follows: section 2 introduces the radar features and 
the radar data processing; secontion 3 proposes the 
classification using support vector machine; 
performance evaluation is shown in section 4, and a 
discussion and summary are given in section 5.   
 

2. Method 
 
2.1 Radars and Joss-Waldvogel Disdrometers  

 
In the current work, the SVM precipitation classification 
approach was developed and validated on a C-band 
polarimetric radar (RCMK) located at Makung, Taiwan. 
The Weather Wing of the Chinese Air Force deployed 
this radar and made the data available to the Central 
Weather Bureau (CWB) of Taiwan since 2009. 
Together with other three single-polarization S-band 
WSR-88D (RCCG, RCKT, and RCHL) and one dual-
polarization S-band radar (RCWF), these five radars 
provide real-time QPEs for CWB to support missions of 
flood monitoring and prediction, landslide forecasts and 
water resource management. Operating with a 
wavelength of 5.291 cm, RCMK performs volume 
scans of 10 tilts (0.5o, 1.4o, 2.4o, 3.4o, 4.3o, 6.0o, 9.9o, 
14.6o, 19.5o and 25o) every 5 minutes with the range 
resolution of 500 m and angular sampling of 1 degree.  
 
In order to understand drop size distribution (DSD) 
features from different types of precipitations, this work 
applies the DSD data of total 4306 minutes between 
2013 to 2014 collected by four impact-type Joss-
Waldvogel disdrometers (JWD). These four JWDs 
locate at the center of Taiwan as shown in Fig. 1. The 
measurement range and temporal resolution of these 
JWDs are 0.359 mm ~ 5.373 mm and 1 minute, 
respectively.  
 

 
 
Figure 1. The terrain of Taiwan, and the location of C-
band polarimetric radar RCMK (marked with black 
square), JWDs (marked with black stars), and four S-
band single polarization radar RCCG, RCKT, RCHL, 
and RCWF (marked with black circles). 
 
2.2 Input Polarimetric Radar Variables and 

Preprocess 
 



The inputs of the SVM approach are four variables: 
reflectivity (Z), differential reflectivity fields (ZDR), the 
standard deviation of Z (𝜎%), and separation index (i).  
In most of the classification approaches, Z is used as 
the input because the reflectivity field from convective 
systems generally shows higher values than from 
stratiform systems (e.g., Steiner et al. 1995, hereafter 
SHY95, Anagnostou 2004, Yang et al. 2013). In the 
approach developed by SHY95 and Powell et al. 
(2016), a radar echo with the reflectivity of 40 dBZ and 
above is automatically classified as convective type. 
The reflectivity value at 2-km elevation was used as 
one of the inputs in S-band classification (e.g., 
Anagnostou 2004, Yang et al. 2013).  The second input 
viable is the differential reflectivity. Stratiform 
precipitations generally consist of condense of small to 
median raindrops, which generally produce a low value 
of ZDR. The convective precipitation, on the other hand, 
may produce large ZDR because they consist of large 
and oblate raindrops. 
 
For short wavelength radars such as those of C-band 
and X-band, the Z and ZDR fields may be significantly 
attenuated when the radar beam goes through a heavy 
precipitation zone. Therefore, both Z and ZDR fields 
need be corrected from attenuation before applied in 
the precipitation classification. Different attenuation 
correction methods were proposed using the 
differential phase (𝜙'() measurement such as linearly 
𝜙'(  approach, ZPHI method, and iterative ZPHI 
method (e.g., Jameson 1992, Carey et al. 2000, Testud 
et al. 2000, Park et al. 2005). Because of its simplicity 
and easy implementation in a real-time system, the 
linear 𝜙'( method was applied in the current work.  
 
    𝑍 𝑟 = 𝑍, 𝑟 + 𝛼 𝜙'( 𝑟 − 𝜙'( 0                 (1.a)              
    𝑍'1 𝑟 = 𝑍'1, 𝑟 + 𝛽 𝜙'( 𝑟 − 𝜙'( 0           (1.b)         
          
where 𝑍, 𝑟  (𝑍'1, 𝑟 ) is the observed Z (ZDR) at range 
r; 𝑍 𝑟  (𝑍'1 𝑟 ) is the corrected value; 𝜙'( 0  is the 
system 𝜙'(  value; and 𝜙'( 𝑟  is the filtered (by FIR 
filter) differential phase.  The attenuation correction 
coefficients 𝛼 and 𝛽 depend on DSD, drop size shape 
relations (DSR), and temperature variations. The 
typical range of 𝛼 (𝛽) is 0.06~0.08 (0.01~0.03) dB deg-

1 for C-band radars (e.g., Carey et al. 2000; Vulpiani et 
al. 2012). The Z and ZDR fields are further smoothed 
with a 3 (azimuthal) by 3 (range) moving window 
function after corrected from attenuation.  
 
Using the separation index i to separate convective 
precipitation from stratiform was originally proposed by 
BAL using a C-band polarimetric radar. According to 
BAL, i was proposed for a normalized gamma DSD: 
 

           𝑖 = 	 𝑙𝑜𝑔89 𝑁;<=> − 𝑙𝑜𝑔89 𝑁;
=<?                 (2)                       

															𝑙𝑜𝑔89 𝑁;
=<? = −1.6𝐷9 + 6.3                   (3)      

 
where 𝑁;<=> is the estimated NW from observed Zh and    
ZDR as: 
                        𝑁;<=> = 𝑍/0.056𝐷9G.H8I                        (4)         

 
                        𝑁;<=> = 𝑍/0.056𝐷9G.H8I                        (4)         
 

 
 
Figure 2. The distribution of log10(Nw) vs D0. The DSD 
data from stratiform and convective precipitations are 
presented with gray circles and black stars, and the 
separator line from Eq. 4 is shown as solid line.  
 
 
 

 
 
 
Figure 3. The time series plot of convective cells to 
stratiform cells ratio (RCS) from 30 August 2011 (A) and 
14 June 2012 (B). 24-hours data 0000 UTC~ 2400 UTC 
are used in each case. The results from BAL with 
threshold T0 = 0, BAL with threshold T0 = -0.5, SVM, 
and MRMS are indicated with thin solid, thin dashed, 
thick dashed and thick solid lines, respectively. 
 



 
𝐷9 						

=
0.0203𝑍'1K − 0.1488𝑍'1H + 0.2209𝑍'1O + 0.5571𝑍'1 + 0.801;		−0.5 ≤ 𝑍'1 < 1.25		
−0.0355𝑍'1H − 0.3021𝑍'1O + 1.0556𝑍'1 + 0.6844;																							−0.5 ≤ 𝑍'1 < 1.25	

 

                                                                                                                                               
The unit of ZDR, Z, Nw, and D0 are dB, mm6m-3, mm-1m-

3, and mm, respectively. The positive values of index i 
indicate convective rain and negative values indicates 
stratiform rain, respectively, and |i| < 0.1 indicates 
transition regions (Penide et al. 2013). BAL pointed out 
that index i worked well in most of the cases in their 
cases, however, incorrect classification results are 
likely obtained for low Z and high ZDR cases in some 
convective precipitations. It should be noted that the 
relation between Z, Nw, and D0 is derived using the 
DSD data collected from Darwin, Australia for C-band 
radar only. Coefficients in Equations 2~5 need be 
rederived for different frequency radars or/and other 
DSD and DSR features.  
 
In the current work, the separation index i derived by 
BAL is used as one of the input variables. It was shown 
by Wang et al. (2013) that DSD and DSR features in 
Taiwan is very similar to those measured from Darwin, 
Australia. Similar R(KDP) relationships were obtained 
using data collected from these two locations. 
Therefore, the separation index i derived using 
Equations 2~5 could be directly used in Taiwan without 
further modification. To ensure this conclusion, Nw and 
D0 were calculated using DSD data collected by four 
JWD located in Taiwan (Fig. 1). Total 4306 minutes 
data from 2013~2014 are used to calculated Nw and 
D0, and the approach of calculating median volume 
diameter D0 using JWD data can be found from Bringi 
et al. (2003). Similar to the work presented in Bringi et 
al. (2009), the distribution of i along median volume 
diameter D0 is shown in Fig. 2, where the (i, D0) pairs 
from stratiform and convective types are represented 
with gray circles and black stars, respectively. Although 
the relation described in Eq. 3 can separate most 
stratiform from convective types, there are still large 
number of points are classified incorrectly. Therefore, 
the single separation index is not sufficient to classify 
all the precipitation events, and the assistance from 
other variables such as Z and ZDR are necessary.  
 
3. Support Vector Machines (SVM) Method 

 
3.1 Introduction of SVM 
 
Support vector machine (SVM) can be viewed as a 
kernel-based machine learning approach, which 
nonlinearly maps the data from input space to a high-
dimension feature space followed by linearly mapping 
to the binary output space (e.g., Burges 1998). Given a 
set of training samples, the SVM constructs an optimal 
hyperplane, which maximizes the margin of separation 
between positive and negative examples (Haykin 
2009). Specifically, given a set of training data 
{(𝑋W, 𝑦W)}W\8] , the goal is to find the optimal weights 
vector 𝑊 and a bias 𝑏 such that: 

 
 

                                                                       (5) 
 
 
 
 
			𝑦W 𝑊`𝑋W + 𝑏 ≥ 1     for     𝑖 = 1, 2, … . , 𝑁            (6)                               
 
where 𝑋W ∈ ℝe  is the input vector, m is the input 
variable dimension (m = 4 in this work), N is the number 
of training samples, and yi is an output with the value  
of +1 or -1 that represents convective or stratiform, 
respectively. The particular data points (𝑋W, 𝑦W) for Eq. 6 
is satisfied with the equality sign are called support 
vectors. The optimum weights vector 𝑊 and a bias 𝑏 
can be obtained through solving the Lagrangian 
function with the minimum cost function (Haykin 2009). 
Since the SVM can be viewed as a kernel machine, 
finding the optimal weight vector and bias in Eq. 6 can 
be alternatively solved through the recursive least 
square estimations of: 
 

           			 𝛼W𝑦W𝑘 𝑋, 𝑋W = 0]g
W\8 	                           (7) 

 
Where 𝑁= is the number of support vectors,  𝛼W is the 
Lagrange multipliers, and 𝑘 𝑋, 𝑋W  is the Mercer kernel 
defined as: 
 
    𝑘 𝑋, 𝑋W = ∅` 𝑋W ∅ 𝑋 = 𝑒𝑥𝑝 − 8

Olm
𝑋 − 𝑋W O     (8)     

                   
With the solved {𝛼W}W\8] , the SVM calculate the 
classification results with new input data 𝑍 ∈ ℝe as: 
 
     𝑓 𝑍 = 𝑠𝑖𝑔𝑛 𝛼W𝑦W∅(𝑥W)`∅ 𝑍]

W\8                       (9)                       

When	𝑓 𝑍 = 1, the output is classified as convective, 
otherwise is classified as stratiform.  
 
 
3.2. Training of the SVM 
 
In SVM approach, the weight vector and bias in Eq. 6 
need be optimized through a recursive least squares 
estimations using the training data set, and the training 
data play a critical role in the SVM approach. To ensure 
the training data are from right classified stratiform and 
convective types, the precipitation is first carefully 
examined following some general classification 
principles. For example, convective precipitation is 
associated with relative strong reflectivity, no obvious 
bight band signature, and high vertically integrated 
liquid (VIL). The precipitation type is then verified by 
ground observation, and then further confirmed by a 
multi-radar-multi-sensor (MRMS) precipitation 
classification approach implemented in Taiwan (Zhang 
et al. 2016). In this MRMS classification approach, the 
3-dimensional radar reflectivity fields from 4 S-band 
single polarization radars (Fig. 1) are mosaiced. The 
composite reflectivity (CREF) together with other fields 



such as temperature and moisture fields are used in 
the surface precipitation classification.   
 
 
4. Performance Evaluation  

 
4.1 Description of the experiments 
The performance of the proposed approach was 
validated with three precipitation events from 2009 and 
2011. Two experiments based on the BAL approach 
with different thresholds (i.e., BAL0 and BAL-0.5) were 
also carried out in the current work. In these two 
experiments, the separation index 𝑖 from each pixel is 
first calculated using Eqs. 2~5 and a threshold of T0 = 
0 (T0 = -0.5) is then used to separate convective type 
from stratiform types: the pixel is classified as 
convective when 𝑖  is larger than T0; otherwise, it is 
stratiform. This work aims at a complementary method 
using separation index i together with other variables to 
separate convective precipitation from stratiform type. 
Other classification approaches, introduced in section 
1, use the data from multiple elevation angles, and their 
performance is not examined in this work.   
 
The classification results from MRMS are used as the 
reference “ground truth” in the current work. Because 
the MRMS results are from the mosaic of four S-band 
single-polarization radars, the coverage and time 
stamp of the ground truth are off from the result of the 
single radar RCMK. The time difference between 
classification results from RCMK and MRMS could be 
as large as 5 minutes. Given the fact that the 
convective storm size, intensity, and cells locations 
could change during the 5-minute period, the pixel-to-
pixel possibility of detection (POD) and false alarm rate 
(FAR) is not feasible to evaluate the performance. 
Therefore, we introduce a convective to a stratiform 
ratio (𝑅rs) to qualitatively evaluate the performance: 
 
                                   𝑅rs = 𝑁tuv

𝑁=>"                (7)          
                     
Where Ncon and Nstr are the total pixel numbers of 
convective and stratiform types, respectively. More 
details about the evaluation results are shown in the 
following sections. 
 
4.2 Experiment results 

 
The performance of the proposed approach was first 
validated with two widespread mixture of stratiform and 
convective precipitation events from 30 August 2011 
and 14 June 2012. For these two cases, 24-hour data 
(0000 UTC ~ 2400 UTC) was used in the evaluation. 
The results from BAL approach (BAL0 and BAL-0.5) with 
different thresholds of 0 and -0.5 were also calculated. 

It should be noted that threshold of -0.5 is lower than 
the value suggested by BAL, and more pixels will be 
classified as convective by BAL-0.5. The classification 
results from proposed SVM were calculated using the 
trained weight vector and biases. The convective ratio 
from MRMS, SVM, BAL0 and BAL-0.5 were calculated 
using Equation 10.  
 
The time series plots of RCS are shown in Figure 3, 
where results from 30 August 2011 and 14 June 2012 
are shown on A and B, and the RCS from MRMS, SVM, 
BAL0 and BAL-0.5 are presented by thick solid, thick 
dashed, thin solid and thin dashed lines, respectively. 
In general, BAL-0.5 classifies more pixels as convective 
than BAL0 as expected for both cases, and SVM shows 
the most similar results to MRMS comparing to BAL 
approaches. For the 30 August 2011 case (Figure 3A), 
if the MRMS result is viewed as the ground truth, BAL0 
shows obvious under classification of convective type 
during this 24-hour period, but BAL-0.5 shows better 
performance. On the other hand, BAL-0.5 classifies 
more pixels as convective type than MRMS in the 14 
June 2012 case (Figure 3B), but the results from BAL0 
are more consistent with MRMS outputs. The overall 
RCS from MRMS, SVM, BAL0 and BAL-0.5 are shown in 
Table 1.  
 
To better understand the performance of each 
approach, the classification results and radar variables 
(Z, ZDR, and i) from two distinct moments were 
examined and shown in Figures 4~7.  Classification 
results from 03:03 UTC 30 August 2011 were first 
shown in Figure 4, where MRMS, SVM, BAL0 and BAL-

0.5 are shown in panel A, B, C, and D, respectively. The 
time stamp for MRMS result is 03:00 UTC, and the time 
difference from other three approaches is about 3 
minutes. The three input variables of SVM at 03:03 
UTC are shown in Figure 5, where Z, ZDR, and i are 
presented in panel A, B, and C. From Figures 3 and 4, 
it could be found that the RCS from MRMS, SVM, and 
BAL-0.5 show similar value, but RCS from BAL0 is 
obviously low. Within the black circle of Figure 5, the 
averages of Z and ZDR both show relative large values 
(Z > 36 dBZ and ZDR > 0.75 dB), this is a clear indication 
of convective type precipitation. Both SVM and BAL-0.5 

classify most the area within the black circle as 
convective, and this result is consistent with the MRMS 
result. Since the separation indexes within the black 
circle are below or slight higher than 0, most of the area 
is classified as stratiform type. For this moment, 
threshold -0.5 shows better performance than 0.  
 
 
 
 



 
 
Figure 4. The classification results from BAL0 (A), BAL-0.5(B), SVM (C) and MRMS (D). The time stamp for BAL0, 
BAL-0.5, and SVM is 03:03 UTC 30 August 2011, and time stamp for MRMS is 03:00 UTC 30 August 
2011.  

 
Figure 5. Radar variables of reflectivity (A), differential reflectivity (B), and separation index (C). The radar data 
was collected by RCMK at 03:03 UTC 30 August 2011. 
 
 
 
 
  



5. Summary and Conclusion 
 

A novel precipitation classification approach using 
support vector machine approach was developed and 
tested on a C band polarimetric radar located in 
Taiwan.  Different from some existing classification 
algorithms that use whole volume scan data, the 
proposed approach only utilizes the data from the 
lowest unblocked tilt to separate precipitation into 
convective and stratiform types. A support vector 
machine method is used to integrate four inputs in 
terms of reflectivity, differential reflectivity, separation 
index, and standard deviation of reflectivity. The 
weighing vector and bias used in the support vector 
machine were trained with typical stratiform and 
convective precipitation events. Comparing to another 
polarimetric radar based approach developed by BAL, 
the proposed approach shows better results during 
three testing cases.  
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