

12A.5 NETCDF-4 PERFORMANCE IMPROVEMENTS OPENING COMPLEX DATA FILES

Edward Hartnett 1,2

1 CIRES, University of Colorado, Boulder, CO 80309, USA
2 NOAA/ESRL/GSD, Boulder, CO 80305, USA

ABSTRACT

The netCDF-4/HDF5 format offers many advantages for
science data users, including built-in compression, a
rich data model, and support for parallel I/O. However,
several performance bottlenecks have been identified
which impact complex files with many variables and
attributes defined. These files are especially prevalent in
the domain of High Performance Computing (HPC).

The performance issues appear when files include
many variables, attributes, or dimensions, and include
slow file opens.

A focus on netCDF-4 performance issues has resulted
in the elimination of several bottlenecks, including time
to open a file, looking up objects in the file, and reading
strided arrays. Significant improvement is demonstrated.

Performance trials are conducted on NOAA’s Thea
platform. Results are presented demonstrating the
improved performance with real-world example files.

1 BACKGROUND

NetCDF is a set of software libraries and self-describing,
machine-independent data formats that support the
creation, access, and sharing of array-oriented scientific
data.

With NetCDF version 4.0 (released in June, 2008),
netCDF users can use HDF5 as the storage format,
accessed through the netCDF APIs. This enabled the
introduction of the enhanced data model, which included
groups, user-defined types, and new unsigned and
64-bit integer types. (Folk, 2003, Rew 2006, Rew 2010,
Rew 2011).

The netCDF data model includes:

● variables - multi-dimensional arrays of data.

● attributes - metadata which are important to
understand the context of the variable data (ex
units).

Users can define attributes, but there are some
reserved names which the user cannot use. In some
cases, these reserved attributes are hidden in the
netCDF API. One of the performance enhancements
described below will use an already-defined hidden
attribute in a new way to improve performance.

2 PERFORMANCE BOTTLENECKS IN NETCDF-4

Some performance bottlenecks in netCDF code stem
from the reading of all metadata at file open.

When the user opens a netCDF file (using a version
prior to 4.6.2), the contents of the file are scanned, and
all metadata are read into memory. This includes all
attributes in the file. Subsequent user requests for
metadata are fast, because the file is not touched,
however the cost of reading all the metadata must be
bourne at file open time.

In the classic-based binary formats (classic, 64-bit
offset, and CDF5), all file metadata are stored together
at the beginning of the file; reading them is fast.
However, HDF5 scatters the metadata in the file.

The HDF5 library does not scan the metadata in a file
when the file is opened with HDF5. An attribute is only
read when and if a user requests it. Consequently, the
HDF5 library does not incur a penalty at open time.

For small, simple files, this make little difference, but for
the large and complex files often used on HPC systems,
there can be a performance penalty opening netCDF-4
files.

3 PERFORMANCE TESTING

To test performance in opening complex files, two new
test programs were added to the netCDF C library.

__
Corresponding author address: Edward J. Hartnett,
edward.hartnett@noaa.gov

These programs are only build if the
--enable-benchmarks configure option is used.

In order to defeat any hardware buffering which may
skew results, each run of the test creates, and then
deletes, it’s own data file.

To take measurements for this paper, the programs
were backported to netCDF versions 4.6.0, 4.6.1, and
4.6.2. The library code after version 4.6.2 is tested first
with lazy variable metadata reads, then also includes
the use of the coordinates hidden attribute instead of
dimscale matching.

3.1 Program tst_attspeft.c

The tst_attspef test creates files with varying number of
variables, global and variable attributes..

When testing for variable performance, this program
writes files with many variables. Each variable has 10
attributes.

When testing for global attribute performance, the files
are created with no variables, and with varying number
of global attributes.

When testing for variable attribute performance, the files
are created with one variable and varying numbers of
attributes attached to that variable. Each attribute is an
array of double, length 100.

A timer is used to time a netcdf open/close of the file.
HDF5 open/close is also timed (including opening the
root group).

The open/close cycle is run 5 times, and the results
averaged.

3.2 Program tst_wrf_reads.c

The program tst_wrf_reads.c creates three different
types of files, and times the open/close operations. The
three file types are:

1. A WRF model chemistry file with > 360
variables.

2. A user-contributed file we call the MERR file,
with many global attributes, and variables with
attributes.

3. A WRF BDY file. This is a file used in all WRF
runs.

For each type of file, the file is created, then closed.
Then the file is opened and closed. The creation/close,
open, and close operations are timed. Note that no data
are written to these files, they only contain metadata.

For each test run, 100 of each file type are created, and
the average times used.

3.3 Testing Platforms

Tests were run on two different machines:

● mikado is a dedicated 6-core Intel i7 system,
with a solid state drive. When running tests, no
other users were on the system, and no other
programs were attempting disk access.

● theia is a NOAA 760 Tflop Cray Compute
Cluster high performance computing system.

3.4 NetCDF Versions Tested

Testing was done with several netCDF versions,
including two intermediate versions after the released
4.6.2, which include code changes that are waiting to be
merged into the netCDF master branch.

● 4.6.0 - released January 25, 2018.
● 4.6.1 - released March 19, 2018.
● 4.6.2 - released November 19, 2018.
● lazy var metadata - includes changes to read

some variable metadata lazily (i.e. only when a
user request for necessary informat triggers
the read) See pull request #1260
(https://github.com/Unidata/netcdf-c/pull/1260).

● coordinates att - includes lazy var reads of
some metadata, also uses the hidden
coordinate attribute to speed opens on newly
created netCDF-4 files. Pull request #1262
(https://github.com/Unidata/netcdf-c/pull/1262).

4 ATTRIBUTE PERFORMANCE IMPROVEMENTS

Two improvements have been made to attribute
reading, and both of these improvements were part of
the netCDF 4.6.2 release.

https://github.com/Unidata/netcdf-c/pull/1260
https://github.com/Unidata/netcdf-c/pull/1262

4.1 Lazy Attribute Read

Starting with version 4.6.2, no attributes are read at file
open.

When the user requests a global attribute, then all
global attributes (for that group) are read. When the
user requests a variable attribute, all attributes of that
variable are read.

With the new lazy read code, a file with many attributes
can be opened very quickly. If the attributes are never
requested by the user, they are never read. If only some
variable attributes are requested by the user, then the
attributes of all the other variables are never read.

Attributes are read for a variable or the group when the
user:

● Does an nc_get_att_*() for any attribute of the
variable (or group).

● Does an nc_inq_var() to get the number of
attributes for a variable (or nc_inq() for the
group attributes).

● Does an
nc_del_att()/nc_rename_att()/nc_copy_att() for
any attribute of the variable (or group).

4.1.1 Results of Lazy Attribute Performance Testing

Lazy attribute reads result in a significant performance
improvement when a file contains many attributes.

The improvement in performance starting with version
4.6.2 is apparent when opening files with one variable
with many attributes (see figures 1 and 2).

Even greater improvement is seen when opening a file
with many global attributes (see figures 3 and 4).

One surprising result is the extent to which large
numbers of variable attributes still cause the file to be
slower to open. This is under investigation (See figure
1.).
Lazy attribute reading also applies to global attributes,
and results in significant improvement in performance
opening a file. (See figures 3 and 4.)
4.2 Fast Global Attribute Reads

Global attributes apply to the entire data file (or group).
In a NetCDF-3 file, there is only one set of global

attributes in a file, but a netCDF-4 file can have many
groups, and each group may have global attributes.

In the netCDF-4 C library code, global attributes were
being read in a different way from variable attributes.
The variable attributes used a HDF5 iterator, and the
global attributes used a for-loop, in which each attribute
is accessed by number.

The iterator is orders of magnitude faster.

The netCDF library code has been changed so that
global attributes are now read using the iterator. (The
same code is now used to read both global and variable
attributes).

This results in much faster read times for global
attributes.

4.2.1 Results of Fast Attribute Reads

With lazy attribute reads, the cost of opening a file with
global attributes has already been reduced, because the
attributes are not read until requested. When any global
attribute is read, then all are read and held in the
metadata buffer. With the new, faster read code, there is
a significant performance improvement in reading global
attributes. (For this test the file is opened, then the
number of global attributes checked. This triggers a
read of all global attributes.) (See figures 5.)
With fast global attribute reads, opening the file and
checking global attributes is almost as fast as opening
the file in HDF5, which does no metadata reading at all.
As can been seen in the graph the performance with
and without lazy attribute reading is similar, as
expected, because in this test the number of global
attributes is inquired, and this triggers a read of all
global attributes.

Checking this work on HPC system their, similar results
were obtained. The time to open a netCDF-4 file with
attributes has improved dramatically. A strong
relationship between the number of attributes and the
opening time has been eliminated. (See figure 6.)
5 VARIABLE PERFORMANCE IMPROVEMENTS

On file open, metadata is read from the file relating to
the HDF5 datasets in the file. These datasets are either
netCDF variables and/or dimensions.

The following metadata is read for each dataset:

● scale (see below)
● type
● cache settings

● chunking settings
● fill settings and value

Note that the dimension scale information is read at file
open. Dimension scale information can be used to map
the dimensions to the variables in the file.

After looping through the objects in the file, the netCDF
library matches the dimension scale info of the datasets.
Testing has shown that this mapping is taking a
significant amount of the file open time.

5.1 Lazy Read of Some Variable Metadata

With lazy read of some variable metadata, much of the
variable metadata are not read at file open time.

At file open, we need the type and some of the scale
settings. None of the other metadata are immediately
needed.

With the lazy read of some variable metadata, these
other elements of the metadata are read for the variable
only if needed. When the user uses a variable, the
additional variable metadata are read.

This results in faster file open times for files with many
variables. (See figures 7 and 8.) It also results in
improvements in the file open time for the real-world
example files (see figures 9, 10, 11, 12, and 13).

5.2 Using Hidden COORDINATES Attribute

One case in which HDF5 dimension scales cannot
completely model netCDF dimensions and coordinate
variables is the case of a dimension with a
multi-dimensional coordinate variable. Dimension scales
can only ever be one dimension.

To handle this, a hidden attribute "_Netcdf4Coordinates"
is used to hold the list of dimension IDs associated with
a multi-dimension coordinate variable. This hidden
attribute has been present in all versions of netCDF-4.

By turning this attribute on for all variables, it is possible
to use this hidden attribute to map variables to
dimensions. This allows the reading of dimscale
metadata to be deferred. It also allows the matching of
dimension scale information to be skipped. This results
in faster file open times. (See figures 7 and 8.) It also
results in improvements in the file open time for the
real-world example files (see figures 9, 10, 11, 12, and
13).

This performance improvement applies only to newly
created netCDF-4 files. Existing netCDF-4 files do not
possess the hidden coordinates attribute, Their
dimensions must be determined by matching the
dimension scale information, which is slower.

6 OTHER PERFORMANCE IMPROVEMENTS FOR
INTERNAL METADATA LISTS IN NETCDF-4.4.2

NetCDF release 4.4.2 included some additional
performance improvements related to file opens.Testing
determined that these changes had a small impact for
the tested data compared to the lazy attribute reads.

The additional performance improvements were:

● Hashed Lists
● Reduction of Unnecessary Lookups

The use of hashed lists had a small effect on the test
programs. The reductions in unnecessary lookups had
little or no effect on the performance in these tests.

7 SUMMARY

The opening of NetCDF-4/HDF5 files by the netCDF C
library has been examined for performance issues, and
four performance improvements have been developed:

1. Lazy attribute reads
2. Fast global attribute reads
3. Lazy read of some variable metadata
4. Using hidden coordinates attribute for

dimension mapping.

Improvements 1 and 2 have been merged with the
netCDF code base and were released with version
4.6.2. Improvements 3 and 4 have been submitted as
pull requests to the netCDF project. If accepted, they
will be in the next released version of netCDF, 4.6.3.

Improvements 1 through 3 will apply to any netCDF-4
file. Improvement 4 will only apply to files created with
hidden coordinates attribute, which means only newly
created files will benefit from this performance
improvement.

8 REFERENCES

M. Folk, R. Rew, M. Yang, Q. Koziol, E Hartnett, R. E.
McGrath, NetCDF-4: Combining netCDF and HDF5
Data, December 2003, AGU Fall Meet. Abstr.

Rew R., E. Hartnett, D. Heimbigner,J. Caron,
NetCDF-4: Software Implementing an Enhanced Data
Model for the Geosciences, January 2006, Conference:
22nd International Conference on Interactive
Information Processing Systems for Meteorology,
Oceanography, and Hydrology

Rew R., E. Hartnett, D. Heimbigner,J. Caron, Advances
in the NetCDF Data Model, Format, and Software
December 2010, University Corporation for Atmospheric
Research, Boulder, CO

Russ Rew, Glenn Davis, Steve Emmerson, Harvey
Davies, Ed Hartnett, Dennis Heimbigner and Ward
Fisher, December 2018: The NetCDF Users Guide,
University Corporation for Atmospheric Research,
Boulder, CO

https://www.unidata.ucar.edu/software/netcdf/docs/user_guide.html

8 FIGURES

Figure 1: Time to open file with many variable attributes. With lazy attribute reads (introduced in 4.6.2), files with
many attributes open more quickly. Using the hidden coordinates attribute further speeds file opens. Tests were run
on workstation mikado.

Figure 2: In this chart the time to open a netCDF-4 file with many variables is shown on theia. As on the development
workstation mikado, version 4.6.2 improves performance. Use of hidden coordinates attribute for dimension mapping
adds additional performance improvements. Test run on theia.

Figure 3: Time to Open NetCDF-4 File with Global Attributes. Using lazy attribute read (introduced in version 4.6.2),
global attributes are not read at file open. All versions of netCDF-4 after 4.6.2 show almost zero open time global
attributes. Tests were run on workstation mikado.

Figure 4: This chart shows the time taken by different versions of netCDF to open a netCDF-4 file with many global
attributes on theia. Due to the introduction of lazy attribute reading, the time to open the file is greatly reduced starting
with version 4.6.2. This matches the results on the development workstation. Tests were run on theia.

Figure 5: Time to Open NetCDF-4 File and Check Global Attributes: Use of fast global attribute read results in
performance improvement for files that use global attributes. In this test, the file is opened, and nc_inq() is called,
which triggers a read of the global attributes. Starting with version 4.6.2, reads of the global attributes are much
faster. Tests were run on workstation mikado.

Figure 6: This chart shows the time to open a netCDF-4 file with many global attributes, and perform an nc_inq(), for
different netCDF versions, on theia. The call of nc_inq() defeats the benefits of lazy attribute reads. The global
attributes are being read in all cases. But starting with version 4.6.2, fast read of global attributes has removed the
former performance penalty of global attributes. Tests were run on theia.

Figure 7: Time to Open NetCDF-4 File with Many Variables. Times are shown for recently release versions of
netCDF, as well as the current (December 2018) master branch, with lazy variable metadata reads, and with use of
hidden coordinates attributes. Each variable also has 10 attributes. Version 4.6.2 introduced lazy attribute reads,
leading to improvement in performance. Lazy variable metadata reads adds some performance improvement. The
use of the hidden coordinates attribute for dimension mapping adds further performance improvement. Tests were
run on workstation mikado.

Figure 8: This chart shows the time to open a netCDF-4 file with may variables in different versions of netCDF on
theia. Each variable in the test file has 10 attributes. The lazy attribute reads of version 4.6.2 improve performance.
Further small improvement is obtained from doing a lazy read of some of the variable metadata. Further performance
improvement is seen using the hidden coordinates attributes to map dimensions. Test were run on theia.

Figure 9: Open Times for NetCDF-4 WRF CHEM file. The data file is a real-world netCDF file from the WRF model.
This chart shows the times for different versions of netCDF to open and close the sample data file. In version 4.6.2
there is an improvement due to lazy attribute reads and other performance improvements. When lazy var metadata
reads are used, there is a further improvement. When hidden coordinates attributes are used for dimension mapping,
there is a larger improvement. Tests were run on workstation mikado.

Figure 10: This chart shows the times to open and close a WRFBDY file by different netCDF versions. Version 4.6.2
introduced lazy attribute reads, and this is apparent from the improvement in performance. Using lazy read for some
of the variable metadata further improves performance. Use of the hidden coordinates attribute to do dimension
mapping adds a more substantial performance improvement. Tests were run on workstation mikado.

Figure 11: Times to open/close the WRFBDY file on theia. The use on lazy attribute reads starting in version 4.6.2
has only a small impact on the time to open the file. Doing lazy read of some variable metadata further improves
performance. Using the hidden coordinates attribute yields a further significant improvement. Tests were run on theia.

Figure 12: This chart shows the time to open and close the GMAO sample MERR data file for different versions of
netCDF. Version 4.6.2 introduced lazy reads of attributes, which shows minor improvement. The lazy read of some
variable metadata yields further improvement in performance opening the file. Using the hidden coordinates attribute
to map dimension yields a greater improvement in performance. Tests were run on workstation mikado.

Figure 13: This chart shows the time to open and close the MERR sample file for various netCDF versions on theia. It
is not clear why, in this case, 4.6.0 ran more quickly, but there are other users on theia when tests are being run, and
these may interfere with results. The performance improvement on 4.6.2 is not evident in this chart, but the
performance improvements of lazy variable metadata reads, and of the use of the hidden coordinates attribute, at
clearly seen. Tests were run on theia.

