
 

USING STANDARD TOOLS TO PACKAGE AND DISTRIBUTE SCIENTIFIC SOFTWARE C AND FORTRAN 
LIBRARIES: A DEMONSTRATION WITH THE GENERAL PURPOSE TIMING LIBRARY (GPTL) 

 

Edward Hartnett 1,2, James Rosinski 3, 

1 CIRES, University of Colorado, Boulder, CO 80309, USA 
2 NOAA/ESRL/GSD, Boulder, CO 80305, USA  

3 NCAR/JCSDA 
 

ABSTRACT 

Important scientific C and Fortran software packages 
are frequently distributed through use of home-grown 
approaches rather than the standard GNU tools 
autoconf, automake, and libtool. This results in wasted 
effort for the distributors of the software, as they 
struggle to achieve portability.  Home grown approaches 
also tend to waste the time of all software installers, 
which have to struggle to correctly build the software. In 
this poster the conversion of a scientific software 
package, the General Purpose Timing Library (GPTL) 
from a home-rolled build system to a standard build is 
demonstrated. This results in nearly an order of 
magnitude decrease in build system complexity, 
measured by lines of code, and an increase in build 
system features for the user, including automatic shared 
library builds, standard configure options, and standard 
make options, as well as increased portability and ease 
of use. As demonstrated by major scientific software 
packages like netCDF and HDF5, these tools can be 
used very effectively to package software portably, 
including  software that is built and run on High 
Performance Computing (HPC) systems. 

1. INTRODUCTION 

1.1 Motivation 

Complex software packages can require considerable 
effort to build and install. Scientific software, such as 
numerical models, make frequent use of math, I/O, 
compression, and other libraries, which must be 
installed, and their location communicated to the 
software build. Dependencies between software 
packages can also become complex; features may be 
used which require a specific version of a library, or 
specific information about the library’s capabilities. 

The  GPTL legacy build system must determine the 
availability (or not) of several other libraries. It also has 
some code that only allies to x86 microprocessors. The 
build system was functional, but required manual 
intervention from the user. 

In order to reduce the maintenance burden, increase 
portability, and support shared library builds, a new 
autotools-based build system has been developed. 

1.2 Autotools 

Standard Linux tools autoconf, automake, and (for 
libraries) libtool are used to configure and build 
packages in a standard way. Collectively these tools are 
referred to as “autotools”. 

Anyone who has built open-source software on Linux 
machines has encountered these tools. To build, the 
user first (optionally) specifies some standard compiler 
flags, and then runs the configure script. The configure 
script queries the target machine for information needed 
to correctly build the software. It then constructs 
Makefiles on the build system. The user runs make to 
build the code, make check to build and run tests, and 
make install to install the code. 

To accomplish this, the developer creates an autotools 
build system, which includes one configure.ac file for the 
project, which is the basis of the configure script, and 
one Makefile.am file for each directory in the build. The 
Makefile.am files are used to construct the final 
makefiles. 

1.3 GPTL 

The General Purpose Timing 
Library(https://jmrosinski.github.io/GPTL) provides 
detailed timing information for an application by 
instituting calls to start and stop timers. These calls can 
be manually inserted by the user, or automatically 
generated through the use of flags available on most 
compilers (e.g. -finstrument-functions on GNU and Intel, 
-Minstrument=functions on PGI) . The library is 
thread-safe, and provides per-thread timing information. 
It also can provide optional summary information across 
MPI tasks. There are other optional capabilities, such as 
integration with the PAPI performance counter library, 
and automatic generation of MPI stats if C-preprocessor 
flag ENABLE_PMPI is defined. 

2. LEGACY BUILD SYSTEM 

2.1 Makefiles 

The GPTL libraries were built with make. A selection of 
different Makefiles were included for different systems 
and compilers. To build the code, the user first copies 

Corresponding author address: Edward J. Hartnett,  
edward.hartnett@noaa.gov 

https://jmrosinski.github.io/GPTL


the makefile template that most matches the build 
system, edits it, then types make. 

2.2 Combined C and Fortran Libraries 

Like many science codes, the original GPTL library 
contains both C and Fortran libraries. Although these 
seem intimately connected to the science developer, 
they are best distributed and maintained as separate 
libraries, repositories, and distributions. 

2.3 Setting Compilers and Flags for the User 

GPTL, like many home-rolled build systems, attempts to 
set compilers and flags in the makefiles. That is, with 
certain compilers, the build attempts to use certain flags, 
and those flags are pre-programmed into the build 
system. 

Increased portability is attempted by providing a variety 
of makefile templates, each with different compilers and 
compiler flags. Although this works for a small number 
of cases, it is not a scalable solution. 

It is not scalable because it is impractical for all compiler 
and compiler options to be supported in the makefiles. A 
new compiler or a new flag requires editing of the 
makefiles, and ultimately a new release to support the 
new compiler or flag. 

Setting flags for the user is also not a long-lasting 
solution. Flags that are optimal with the state of the 
system today, may be counterproductive in a few years 
when the version of the compiler or the capabilities of 
hardware have changed. Over time, the flags that are 
built into the build system may become less relevant 
and less correct. 

The autotools approach allows the user full control over 
compilers and flags. Only the user can select the 
optimal compiler and flags for their target system. Thus 
autotools-based builds can easily take advantage of 
new features or special performance options on the 
target system, even if these features are unknown to the 
GPTL developers. When a new compiler is introduced 
or new flags added to existing compilers, the autotools 
build system does not have to change to support the 
new compiler or new features. 

The legacy build system also included a configure.ac, 
which built a single program: the suggestions script. 
This script helped with the manual creation of Makefiles 
by the GPTL developer. 

3 C LIBRARY 

3.1 Building the Build System 

The build system consists of the configure.ac file and all 
the Makefile.am files, but these files cannot be directly 
run to build the GPTL libraries. Instead, these files are 

used as inputs to the autotool utilities autoconf and 
automake. These programs create the configure script 
and Makefile.in files. 
 
When installing the  package, the configure script is run, 
which uses the Makefile.in files, and information 
gathered from the  target machine, to create Makefile 
files. These files are then used to build the package 
when the user types make. 
 
To assist the developer in managing the build system, 
the autoreconf command will perform a complete build 
of the build system, running all necessary scripts and 
tools in the correct order. 

3.2 Configuration 

The configuare.ac file is where all configuration of the 
build system is managed. This file is in turn converted 
by autoconf to the configure script that is run by the end 
user. 

The configure.ac script is in m4, a macro language that 
is part of the POSIX standard. It is a simple language, 
similar to the C preprocessor, but with more features. 
The configure.ac script also includes Bourne shell script 
commands. 

The configure script must learn about the target build 
system, and must also provide options to the user. The 
--help option is automatically provided to help end-users 
decide what options are available. 

3.2.1 Handling Configure Options 

Many configuration options are provided by autoconf, 
with no developer effort required. For example, 
--enable-shared vs. --disable-shared, or the --prefix 
option, which allows the user to specify the installation 
directory. 

Other options are specific to the GPTL libraries, like 
--enable-pmpi, which enables automatic profiling of 
application calls to MPI functions. This option is 
supported by the following code in configure.ac: 
# Does the user want to turn on PMPI? 
AC_MSG_CHECKING([whether PMPI is to be 
enabled]) 
AC_ARG_ENABLE([pmpi], 
[AS_HELP_STRING([--enable-pmpi], 
              [build with PMPI capability])]) 
test "x$enable_pmpi" = xyes || enable_pmpi=no 
AM_CONDITIONAL(ENABLE_PMPI, [test 
x$enable_pmpi = xyes]) 
if test $enable_pmpi = yes; then 
   AC_DEFINE([ENABLE_PMPI], [1], [enable 
pmpi]) 
fi 
AC_MSG_RESULT($enable_pmpi) 

 



This code sets automake conditional ENABLE_PMPI, 
which is used in the Makefile.am files to add a test if 
PMPI is enabled (from test/Makefile.am): 
if ENABLE_PMPI 
check_PROGRAMS += pmpi 
TESTS += run_par_pmpi_test.sh 
endif 

The configure.ac code also sets a C preprocessor 
macro if ENABLE_PMPI is defined . This macro is 
output to a special header file, config.h, when the user 
runs the configure script. The config.h file contains 
many macros that describe the target build system. 
There are many macros that are provided by autoconf 
for all projects. Using the AC_DEFINE in configure.ac, 
we can add macros in support of the GPTL code, such 
as  ENABLE_PMPI. 

The config.h file must be included as the first header 
included in all library code and test code. This allows 
developers to control how code is built on systems with 
different capabilities. 

3.2.2 Finding Libraries 

Autoconf is good at finding libraries or header files. 
Here’s how we can check for a library (from 
configure.ac): 
# Check for pthread library. 
AC_CHECK_LIB([pthread], [pthread_mutex_init]) 
if test 
"x$ac_cv_lib_pthread_pthread_mutex_init" = 
xyes; then 
   AC_DEFINE([PTHREADS], [1],  
      [pthreads library is present]) 
fi 

3.3 Makefiles 

Makefiles are generated when the user runs the 
configure script. The configure script runs many tests on 
the system, and can set automake conditionals to 
control how the makefiles are constructed. The 
automake conditionals are used in the Makefile.am files. 

Each directory in the project gets a Makefile.am file. 
This file specifies what is built in that directory. 

In most cases, Makefile.am files are simple. Here is the 
Makefile.am that builds the GPTL C library (including 
shared library): 
libgptl_la_CPPFLAGS = -I$(top_srcdir)/include  
 
# This is our output. The GPTL library. 
lib_LTLIBRARIES = libgptl.la 
 
# These are the source files. 
libgptl_la_SOURCES = f_wrappers.c    \ 
getoverhead.c gptl.c gptl_papi.c \ 
hashstats.c memstats.c memusage.c pmpi.c \ 

print_rusage.c pr_summary.c util.c 

3.3.1 Target make all 

The all target builds the library, but no tests are built. 

3.3.2 Target make check 

The check target first runs the all target, then builds and 
runs the tests. Tests are simply programs that use the 
library, and return 0 for success or any other value for 
failure. 

If all tests build and pass, then make check returns 0, 
otherwise it fails. 

3.3.3 Target make install 

The install target first runs the all target, then installs the 
library in /usr/local, or elsewhere, if the user used the 
--prefix configure option. An uninstall target is also 
provided automatically. 

Note that the install target does not run the tests. 

3.3.4 Targets make dist/distcheck 

The dist target builds a tarball with all files needed to 
build the GPTL C library. Users of the tarball do not 
have to have any autotools software installed, nor do 
they run autoreconf on their system (the autotools files, 
configure.ac and the Makefile.am files, are provided in 
the tarball for completeness, but the tarball also 
contains the  created configure script, and the 
Makefile.in files that are converted to Makefiles when 
the configure script is run.) 

The distcheck target first builds a distribution tarball, and 
then unpacks it and does a make check, and a make 
distclean, then ensures that everything is deleted. The 
distcheck target, as its name implies, allows you to 
check that your distribution tarball is complete and 
correct. 

3.3.5 Target make clean/distclean 

The clean target works as expected. The distclean 
target does an extra level of cleaning, returning the build 
to a state before the configure script was run. 

4 FORTRAN LIBRARY 

4.1 Configuration 

As with the configuration of the C library, necessary 
libraries and headers are found when the user runs the 
configure script. One such library is the GPTL C library, 
which must be built and installed before the 
GPTL-Fortran library is built. This is done in 
configure.ac: 
# Find the GPTL C library. 

 



AC_CHECK_LIB([gptl], [GPTLinitialize], [], 
                  [AC_MSG_ERROR([Can't find or 
link to the GPTL C library.])]) 

As is good practice in configure scripts,  error out if 
required supporting libraries or tools cannot be found.  

4.2 Makefiles 

The automake file to build the Fortran library is in the src 
subdirectory. It is slightly more complex than the one 
used to build the C library (src/Makefile.am): 
libgptlf_la_FCFLAGS = -I$(top_srcdir)/include  
if HAVE_PAPI 
libgptlf_la_FCFLAGS += -DHAVE_PAPI 
endif 
if HAVE_MPI 
libgptlf_la_FCFLAGS += -DHAVE_MPI 
endif 
# This is our output. The GPTL-fortran  
# library. 
lib_LTLIBRARIES = libgptlf.la 
libgptlf_la_SOURCES = gptlf.F90 \ 
printmpistatussize.F90 \ 
process_namelist.F90 
# Install these in the include directory. 
include_HEADERS = gptl.mod 

Note the .mod file, which will be installed in the include 
directory. 

The Fortran build does not use the config.h file, but 
fortran 90 does support preprocessor ifdefs, and those 
are supported by setting macros with the -D option in 
FCFLAGS. 

4.2.1 Standard Targets 

As with the C library, standard targets are supported, 
including all, check, clean, install, dist, distcheck, and 
uninstall. 

5 COMBINED DISTRIBUTION CONTAINING C AND 
FORTRAN LIBRARIES 

The original GPTL distribution included both C and 
Fortran libraries. We have broken these into separate 
projects. 

However, we would still like to have a combined 
distribution which includes both C and Fortran libraries. 
There is an easy way to accomplish this using autoconf. 

We start by creating a new, third repo, which will hold 
the configuration files for the combined distribution. 

5.1 Use of git Submodules 

The new combined repository also offers an 
improvement in programmer workflow. Using git 
submodules we can achieve a combined development 

environment, while still maintaining separate C and 
Fortran library repositories. 
 
We start by cloning the combined distribution project, 
and using the following commands to add submodules: 
 
git submodule add 
git@github.com:jmrosinski/GPTL.git 
git submodule add 
git@github.com:NOAA-GSD/GPTL-fortran.git 

This creates directories GPTL and GPTL-fortran, which 
contain the contents of the C and Fortran library 
repositories. 

Now the C and the Fortran libraries my be edited and 
tested as a unit. A separate git commit is required for 
each of the three repositories which have been 
changed. But the developer can make changes in either 
library, and then use the combined build to ensure that 
both libraries still work, and still work together. 

5.2 Configuration 

The configure.ac file for the combined distribution 
project is small. After initializing autoconf, automake, 
and libtool, the script launches the C and Fortran library 
configuration scripts. 
 
An additional option, --enable-package-build, has been 
added to the Fortran library builds. Setting this option 
notifies the Fortran library build that this is a combined 
library build, so it can find the C library. 
 
# Build the GPTL C library. 
AC_CONFIG_SUBDIRS([GPTL]) 
 
# Add this arg for the fortran build, to tell 
# it to use the C library we just built. 
ac_configure_args="$ac_configure_args \ 
--enable-package-build" 
 
# Build the GPTL Fortran library. 
AC_CONFIG_SUBDIRS([GPTL-fortran]) 
 
AC_OUTPUT 

5.3 Top-Level Makefile.am 

The Makefile.am file for the combined release launches 
the build in each of the two subdirectories: 
 
SUBDIRS = GPTL GPTL-fortran 
 
This will cause first the C, and then the Fortran GPTL 
libraries to be built. 

5.4 Fortran Configuration Changes 

The Fortran test directory needs to link to the C library. 
In stand-alone Fortran library builds, the location of the 
C library is specified in CPPFLAGS and LDFLAGS, and 
the configure script adds the -lgptl to the  link lines. 

 



 
But with a combined build, the C library is not going to 
be available in that way, and is instead to be found in 
the GPTL/src directory. 
 
To accommodate this, the following was added to the 
configure.ac: 
 
AC_ARG_ENABLE([package-build], 
  [AS_HELP_STRING([--enable-package-build], 
    [Set internally for package builds, \ 
     should not be used by user.])]) 
test "x$enable_package_build" = xyes || \ 
enable_package_build=no 
AM_CONDITIONAL([BUILD_PACKAGE], [test \ 
"x$enable_package_build" = xyes]) 
 
# Find the GPTL C library, unless this is a 
# combined C/Fortran library build. 
if test $enable_package_build = no; then 
   AC_CHECK_LIB([gptl], [GPTLinitialize], [],\ 
      [AC_MSG_ERROR([Can't find or link to \ 
                     the GPTL C library.])]) 
fi 
 
This adds the --enable-package-build option to the 
Fortran build. When used, this option tells the configure 
and Makefiles that the C library is located as part of the 
combined package, rather than already being installed. 

5.5 Fortran Test Makefile.am Changes 

Within the Fortran library Makefile.am, the follow change 
allows the build to find the C library, in combined library 
builds: 
 
# For combined C/Fortran builds, find the C  
# library. 
if BUILD_PACKAGE 
LDADD = ${top_builddir}/../GPTL/src/libgptl.la 
endif 

5.6 Installing the Combined Package 

The combined package is built exactly like the individual 
libraries. The options given to configure will be passed 
to both C and Fortran builds. (Unknown configuration 
options are ignored.) 
 

6 RESULTS 

6.1 Greater Portability 

The previous build system for GPTL supported a variety 
of build platforms, but the approach of specifying 
compilers and flags in the makefile is fundamentally 
limited to those that have been previously encountered 
by the development team. 

The new build system is capable of building on many 
more systems, and leaves the selection of compiler and 

flags in the hands of the end user. As a result, it will be 
able to build with compilers and compiler options that 
are not known to the GPTL developers. Even future 
compilers and compiler options can be supported. 

6.2 Additional Features 

The autotools packages provide some build and 
configure features that were not supported in the 
previous build system: 

● Shared library builds. 

● Standard make targets dist, distcheck, 
uninstall. 

● Standardised help setting specific configure 
options with configure --help. 

6.3 Reduction in Complexity 

Significant reduction in complexity has been achieved. 
The total number of files required to support the build 
has dropped from 30 to 14. The number of lines of code 
(contents of make and configure files) has been reduced 
by almost an order of magnitude. 

build system total files lines of code 

legacy 30 4807 

autotools 
(combined 
C/Fortran 
build) 

14 593 

Reduction in complexity reduces maintenance costs, 
enables changes to be made quickly, and reduces the 
chance of serious errors in the build system. 

6.4 Friendly to Linux Package Management Systems 

Using autotools, and separating the C and Fortran 
libraries, allows the GPTL C and Fortran libraries to 
work within the standard Linux package management 
systems. This will allow end users to install the library 
using yum/apt package management tools, which is the 
easiest and simplest way to install software on a Linux 
system. 

6.5 Developer and User Workflow 

6.5.1 User Workflow 

The end-user of the GPTL libraries does not need to 
know anything about the autotools: autoconf, automake 

 



and libtool. The end user does not even have to have 
these tools installed on their system. 

The GPTL libraries are installed from the distribution 
tarball. This contains the configure script, and the 
Makefile.in files that it uses to construct the Makefiles on 
the build system. 

To install the libraries, the user unpacks the tarball, then 
runs configure and make install. 

6.5.2 Developer Workflow 

Developers of GPTL will start from the git repository, 
instead of a distribution tarball. The repository does not 
(and should not) contain the intermediate files 
generated by autoconf/automake. Instead, the 
repository contains the source files that autoconf and 
automake need to generate the build system. 

After cloning the repository, developers must run 
autoreconf -i to build the build system. This command 
must also be run whenever the configure.ac file is 
changed, to ensure that a new configure script is 
generated. 

When running autoreconf -i, many intermediate files will 
be generated.These intermediate files must not be 
committed to the repository. They will change slowly 
over time, as the autotools packages release new 
versions. Using autoreconf -i on the clean repository 
clone will always result in a correct and consistent set of 
intermediate files. Committing any of these files to the 
repository may cause future subtle bugs if the autotool 
that generates or needs that intermediate file is 
upgraded. In such a case, the file that has been 
committed to the repository may be incorrect for the new 
version of the tool. 

Developers must never edit the intermediate files. 
Developers interact with the build system through the 
configure.ac file (one per project) and the Makefile.am 
files (one per subdirectory). These are the only build 
system files that are ever edited by the developer. 

7 ACKNOWLEDGMENTS 

Jim Rosinski of NCAR is the author of the GPTL. His 
assistance in the transition to the autotools build system 
was invaluable. 

8 REFERENCES 

GPTL GitHub Site, https://github.com/jmrosinski/GPTL 

GPTL-Fortran GitHub Site, 
https://github.com/NOAA-GSD/GPTL-fortran 

GPTL-all GitHub Site, 
https://github.com/NOAA-GSD/GPTL-all 

 

 

https://github.com/jmrosinski/GPTL
https://github.com/NOAA-GSD/GPTL-fortran
https://github.com/NOAA-GSD/GPTL-all

