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ABSTRACT 

 
A frequency–wavenumber power (𝐏) spectrum was constructed using satellite derived outgoing longwave radiation 
(OLR), and brightness temperature for the tropical latitudes. Since the two datasets overlap for over 34 years with non-
intersecting sources in error and compare relatively well with each other, it is possible to diagnose trends in the tropical 
wave activity from the two datasets with confidence. The results suggest a weakening trend in 𝐏 characterized by high 
interannual variability for wave activity occurring in the low frequency part of the spectrum, and a steady increase in 𝐏 
with relatively low interannual variability for wave activity occurring in the high frequency part of the spectrum. The 
results show the parts of the spectrum representing the Madden–Julian oscillation and equatorial Rossby wave losing 
𝐏, and other parts of the spectrum representing Kelvin waves, mixed Rossby gravity waves, and tropical disturbance 
like wave activity gaining 𝐏. Similar results were obtained when trends in variance corresponding to the first principle 

component was produced using spectrally filtered OLR data representative of atmospheric equatorial waves. Spatial 
trends in the active phase of wave events, and the mean duration of events are shown for the different wave types. 
Linear trends in 𝐏 for the entire spectrum, and regional means in the spectrum corresponding to the abovementioned 

five wave types with confidence intervals are also presented in the paper. Finally, we demonstrate that El Niño–
Southern Oscillation variability does not appear to control the overall spatial patterns and trends observed in the 𝐏 
spectrum. 
 
Key words: Frequency–wavenumber power spectrum, outgoing longwave radiation, satellite IR brightness temperature, 
tropical climate change and trends, and tropical waves.  
 
1. Introduction  

Holton and Hakim (2013) elegantly stated the 
necessity to study the tropics separately from the mid-
latitudes given the complexity of dynamics making up 
the tropical circulation. Unlike the mid-latitudes that are 
mostly dominated by Rossby wave dynamics, the 
tropical latitudes house many different disturbances 
such as equatorial Rossby (ER) waves, Kelvin waves, 
mixed Rossby gravity (MRG) waves, Madden–Julian 
oscillation (MJO; Madden and Julian 1971, 1972), and 
tropical depression-type disturbances (TDs). 
Furthermore, the mid-latitude dynamics are relatively 
better understood and explained by using models such 
as the quasi geostrophic framework, but a similar 
parallel and concise dynamic–thermodynamic 
framework to understand tropical dynamics does not 
exist yet. Since these waves are strongly linked to the 
dynamics observed in the Earth’s atmosphere, 
understanding how these waves may have/continue to 
change will help us better understand atmospheric 
convection, precipitation characteristics, and energy 
redistribution. From the standpoint of climate change 
and variability, it is also critical to improve our 
understanding and prediction of the change of the 
Earth’s climate system. For instance, some studies 
have explored changes and long-term trends in the 
inter-tropical convergence zone (ITCZ) using 
observations and modeling experiments and have 

concluded that the ITCZ may be intensifying and 
narrowing in a warming climate (e.g., Byrne and 
Schneider 2016). If this is true, the ITCZ may more 
readily breakdown and result in an increased 
occurrence of tropical disturbances (e.g., Raghavendra 
and Guinn 2016). As an illustration, Fig. 1c shows the 
long-term changes in deseasonalized outgoing 
longwave radiation (OLR) anomalies from 1979–2016 
where we observe an intensification and shift in 
convection over the northern tropical latitudes and 
vice-versa. There is also a slight preference for 
convection consistent with a La Niña-like state in Fig. 
1b–c since we have experienced increased occurrence 
of La Niña in recent years (e.g., Cai et al. 2015).  

 
While the behavior and anticipated changes of mid-

latitude waves are well captured and documented with 
relatively high confidence using climate models (e.g., 
Francis and Vavrus 2012), a similar analysis is difficult 
and therefore lacking over the tropics. In fact, very few 
global climate models (GCMs) used in the Coupled 
Model Intercomparison Project (CMIP) phase 5 
(CMIP5) were able to simulate what metrics such as 
the frequency(𝑓)-wavenumber (𝑘) power (𝐏) spectrum 
(Wheeler and Kaladis 1999 hereafter WK99) suggest 
is a realistic MJO (Hung et al. 2013). Unfortunately, 
today’s weather and climate models (e.g., Hung et al. 
2013; Schiraldi and Roundy 2017) struggle to 
accurately resolve these waves for many reasons. 
These limitations seen in models may be attributed to 
coarse resolution and poor parameterization of moist 
processes, and the different and complex 
spatiotemporal structures of waves observed near the 
equator that are often ill-resolved by GCMs.  Many 
studies have tried to understand changes in the tropical 
ocean (e.g., Rose et al. 2014), land surface (e.g., Zhou 
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et al. 2014), and atmosphere (e.g., Hua et al. 2016; 
2018) using observations, reanalyses, and 
regional/global models. These studies have proven 
imperative to improving our understanding of the role 
of the tropical latitudes in redistributing energy, 
momentum, and moisture across the globe, and 
regulating the Earth’s climate (e.g., Trenberth and 
Stepaniak 2004; Lewis 2006).  

 
Since GCMs are generally unreliable to diagnose 

tropical waves in both the historic runs and possible 
future climate scenarios (Hung et al. 2013), long-term 
observations and reanalysis datasets are the best 
sources to capture possible effects of climate change 
and variability notwithstanding dataset uncertainties 
and caveats (e.g., Santer et al. 2003). Considering the 
paramount importance of the role of tropical waves and 
convection on global weather and climate (e.g., Lin et 
al. 2006), understanding long-term changes in tropical 
wave activity may provide valuable insight to better 
estimating the impacts of climate change over tropical 
latitudes, and global weather and climate patterns.  

 
While numerous studies have investigated tropical 

waves across different timescales (e.g., Roundy and 
Frank 2004; Chen and Huang 2009; Huang and Huang 
2011; Hung et al. 2013), this paper is motivated by 
incomplete understanding of climate variability and 
change in tropical wave activity, and for the first-time 
sheds light on this glaring issue through the analysis of 
two long-term satellite based OLR and brightness 
temperature (𝑇𝑏) gridded datasets. The datasets were 
used to document changes and trends in the 𝑓-𝑘  𝐏 

spectrum over tropical latitudes (i.e., 15°N–15°S). The 
paper is organized as follows. Sections 2 and 3 provide 
a brief description of datasets and methods used. 
Results pertaining to the long-term trends in 𝐏 
spectrum are presented in section 4. Major conclusions 
and possible physical mechanisms are discussed in 
section 5. 

 
 

2. Satellite Data  
Two different (i.e., geostationary and polar 

orbiting) satellite datasets were used in this study. The 
gridded infrared (IR) channel brightness temperature 
𝑇𝑏  dataset (GridSat-B1; Knapp, 2008; Knapp et al. 

2011) was produced from geostationary satellite data 
for 1982–2016 (35 years) from the International 
Satellite Cloud Climatology Project (ISCCP; Schiffer 
and Rossow 1983) and was re-mapped on a 0.07-
degree latitude equal-angle grid at a 3-hour temporal 
resolution. In order to meet the need for observational 
climate studies, much effort has been done to reduce 
intersatellite differences by rigorous intersatellite 
calibration and temporal normalization in the GridSat 
dataset (Knapp et al. 2011). A view zenith angle 
correction (Joyce et al. 2001) was also applied in 
producing this dataset. Out of the three channels 
available in the GridSat-B1 dataset (i.e., visible 0.7μm, 

IR 11.0μm , and water vapor 7.7μm ), only the IR 
window channel data was used since the other 

channels did not satisfy the Climate Data Record 
(CDR) program quality (NRC, 2004). In order to speed-
up the mathematical operations and statistical 
analysis, the 0.07-degree dataset was re-gridded and 
up scaled to 0.98-degree. The popular and relatively 
coarser resolution interpolated OLR dataset (Liebmann 
and Smith 1996) by the National Oceanic and 
Atmospheric Administration (NOAA) from 1979–2016 
(38 years) was also used in this study. The OLR 
dataset has a temporal resolution of 1-day, a horizontal 
resolution of 2.5° × 2.5°, and was produced using data 
obtained from polar orbiting satellites. Missing data in 
both datasets were treated with the gap filling algorithm 
developed by Garcia (2010) and Wang et al. (2012) 
that works particularly well for satellite derived 
datasets. In both datasets, the lower thresholds can be 
used to detect clouds and quantify cloud top 
temperatures (Schmetz et al. 1997). The negative OLR 
and 𝑇𝑏 anomalies are often used as a proxy to identify 
and detect tropical convection (e.g., Raghavendra et 
al. 2018a). While the OLR dataset has been used in 
numerous studies to understand convection and 
dynamics in the tropics (e.g., WK99; Roundy 2018), 
only few papers have performed similar analyses using 
𝑇𝑏  data (e.g., Wang and Chen 2016; Wang and Li 
2017). 

 
Long-term satellite derived datasets have been 

widely used to detect and quantify climatic signals in 
many studies, particularly over the vast and 
inadequately observed tropical rainforests (e.g., Congo 
by Zhou et al. 2014; Raghavendra et al. 2018a; Jiang 
et al. 2018), landmasses such as the Sahara Desert 
(Wei et al. 2017) and Eurasia (Li et al. 2017), and the 
oceans (e.g., Barton 1995). However, despite large 
efforts made to minimize the intersatellite differences 
in the long-term satellite datasets as mentioned 
previously, trends established using these datasets are 
still prone to residual uncertainties and a tropic of 
considerable debate in the climate community (Santer 
et al. 2003). Often, the data record is relatively short 
and limited to the life span of a satellite or scientific 
mission, and long-term records such as the ones used 
in this paper were created from multiple satellites and 
thus may contain non-climate biases and uncertainties 
(e.g., instrument calibration errors due to satellite 
drift/changover). In our case, the OLR dataset is 
constructed using NOAA operated polar orbiting 
satellites (Liebmann and Smith 1996), and the 𝑇𝑏 

dataset relies on geostationary satellites deployed by 
multiple countries (Knapp et al. 2011). Since the two 
datasets use different types of satellites/sensors and 
are processed differently, they would be associated 
with non-intersecting sources of error and uncertainties 
between them. Here we include both datasets to study 
long-term changes and trends in tropical wave activity, 
which can enhance the confidence in our findings and 
may identify their differences (e.g., Raghavendra et al. 
2018a). Although there are only two datasets applied 
here, they are constructed from numerous satellites. 
While individual satellites may be associated with 
systematic trends over short-term periods due to orbital 
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decay and other factors, these would affect the two 
datasets differently and would not likely produce 
monotonic long-term trends over time. 

 
3. Methods 

After treating the OLR and 𝑇𝑏 for missing data and 
subsetting to include only the tropical latitudes (i.e., 
15°N–15°S), the refined datasets were deseasonalized 
to prevent aliasing (WK99) using five pairs of 
harmonics to the annual cycle (𝐗; Roundy 2017). The 
regression coefficients (𝐂) are given by Eq. 1 

 

𝐂 = (𝐗𝐓 × 𝐗)−𝟏 × 𝐗𝐓 × 𝐘      (Eq. 1) 
 

where 𝐘  is the 3D (i.e., 𝑡𝑖𝑚𝑒 , 𝑙𝑎𝑡 , and 𝑙𝑜𝑛 ) matrix 
containing OLR or 𝑇𝑏 data. Using Eq. 1, the seasonal 

cycle (𝐗 × 𝐂) was calculated and later subtracted from 
𝐘  to obtain the anomalies with respect to 𝐘  (i.e., 
𝐘𝒂𝒏𝒐𝒎 ). Using techniques similar to WK99, the 
symmetric ( 𝐘𝐬𝐲𝐦𝐦 ) and antisymmetric ( 𝐘𝐚𝐬𝐲𝐦 ) 

components of the dataset were then computed (Eq 2–
3).  
 

𝐘𝐬𝐲𝐦𝐦 =
𝐘𝐚𝐧𝐨𝐦(𝟏𝟓°𝐍−𝟎°) + 𝐘𝐚𝐧𝐨𝐦(𝟏𝟓°𝐒−𝟎°)

𝟐
     (Eq. 2) 

 

𝐘𝐚𝐬𝐲𝐦 =
𝐘𝐚𝐧𝐨𝐦(𝟏𝟓°𝐍−𝟎°) − 𝐘𝐚𝐧𝐨𝐦(𝟏𝟓°𝐒−𝟎°)

𝟐
     (Eq. 3) 

 

The 𝐘𝐬𝐲𝐦𝐦 and 𝐘𝐚𝐬𝐲𝐦 were subjected to segmentation 

using 200-day time windows that were detrended and 
tapered to zero along the ends of the time dimension 
using a 𝑐𝑜𝑠𝑖𝑛𝑒 𝑏𝑒𝑙𝑙 in order to prevent spectral leakage 
(WK99). The 200-day windows were repeated along 
the data array every 100 days. A 200-day window was 
chosen to increase the number of 𝑓 bins and resolve 
the time scales of the motions of interest in this paper.  
The discrete Fourier transform (DFT) using a fast 
Fourier transform ( 𝐹𝐹𝑇 ; Frigo and Johnson 2005, 
1998) was then applied to each 200-day time window, 
and an 𝐹𝐹𝑇 shift was applied to rearrange the zero-𝑓 
component to the middle of the domain iteratively to 
obtain 𝐹𝐹𝑇(𝐘𝐬𝐲𝐦𝐦)  and 𝐹𝐹𝑇(𝐘𝐚𝐬𝐲𝐦) . Finally, the 

symmetric and antisymmetric 𝐏  was calculated by 
taking the complex conjugate (i.e., 𝐏𝐬𝐲𝐦𝐦 =

 𝐹𝐹𝑇(𝐘𝐬𝐲𝐦𝐦)  ×  𝑐𝑜𝑛𝑗[𝐹𝐹𝑇(𝐘𝐬𝐲𝐦𝐦)]  and 𝐏𝐚𝐬𝐲𝐦 =

 𝐹𝐹𝑇(𝐘𝐚𝐬𝐲𝐦)  ×  𝑐𝑜𝑛𝑗[𝐹𝐹𝑇(𝐘𝐚𝐬𝐲𝐦)] ). Similar to WK99, 

the mean time–latitude 𝐏 spectrum for the symmetric 
and antisymmetric parts was obtained by divided by 
the smoothened mean background spectrum (i.e., 
𝐏𝐬𝐲𝐦𝐦+𝐏𝐚𝐬𝐲𝐦

𝟐
; see Fig. 2 for normalized 𝐏 spectrum). Note 

that normalization by the background is not necessary 
for this analysis and since the background is constant 
it does not impact the trends.   

 
 To demonstrate whether the trends in wave 

activity are consistent with trends in spectral variance 
corresponding to each wave band, an empirical 
orthogonal function (EOF) analysis (e.g., Kiladis et al. 
2009) was applied to the filtered daily OLR anomaly 
data from 1979–2016 for the five different wave bands. 
Trends in signals projecting onto these patterns will 
correspond to trends conforming to the target EOF 
modes themselves instead of the background “noise”. 

This analysis was performed by first spectrally filtering 
the daily long-term OLR dataset to retain only those 
frequencies and wavelengths representative of the 
target wave. The spectral filters applied are similar to 
the spectral bands illustrated in Fig. 2. A data matrix 
including the entire time series of filtered OLR data on 

the full tropical grid from 15N to 15S was created, and 
the eigenvectors of the covariance matrix were 
computed. Only the leading EOF (EOF-1), which 
explains the largest variance was retained. The filtered 
data were then projected onto EOF-1 to obtain the 
timeseries corresponding to the first principle 
component (PC-1). Variance was obtained by squaring 
the PC-1 timeseries. A trend in variance was obtained 
by using linear regression, with time as the predictor of 
the squared PC-1 timeseries. 

 
Since P depends on multiple factors such as 

frequency (how often an event occurs), period (how 
long an event lasts) and wavelength of the disturbance, 
and trends in P alone do not necessarily reveal how a 
particular disturbance is changing over time. The 
filtered OLR data were also used to evaluate possible 
trends in anomaly characteristics in the given bands. 
The technique used here is similar to ones used in 
evaluating heatwave trends (e.g., Raghavendra et al. 
2018b) where the frequency, intensity, and duration of 
heatwave events are calculated based on a threshold 
temperature. However, instead of using an arbitrary 
percentile threshold for filtered OLR representative of 
different equatorial waves, here we identify an event 
based on the spectrally filtered negative OLR anomaly 
present in the 38–year time series for each grid point 
between 15°N–15°S. This technique helps identify the 
frequency of occurrence, duration, and other 
measurements such as the mean OLR anomaly during 
the active phase of the disturbance (not shown since 
trends were mostly insignificant) for signals in the 
different wave filter bands.  

 
The influence of El Niño–Southern Oscillation 

(ENSO) variability was accounted for by calculating the 
difference in the mean 𝐏  for those time windows 
corresponding to a particular ENSO state based on the 
ERSSTv5 Niño 3.4 index (Huang et al. 2017) and the 
Niño 3.4 index data was obtained from NOAA’s 
Climate Prediction Center (CPC; 
http://www.cpc.ncep.noaa.gov/data/indices/). The 
threshold for an El–Niño time windows was a mean 
Niño 3.4 index greater than 0.75, La–Niña if the mean 
Niño 3.4 index was less than −0.75, and ENSO neutral 
conditions if the mean Niño 3.4 index was between 
±0.25.  

 
Here we use three approaches to quantify the 

changes in the spectral 𝐏 obtained from the OLR and 
𝑇𝑏 datasets. To quantify trends at the grid and regional 
mean levels, least squares regression was used to 
estimate the linear trend. The statistical significance 
(p–value) of the linear trend line was estimated by the 
two-tailed student’s t-test. A Mann-Kendall (MK) test 
was applied in some case in conjunction with a linear 
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regression analysis to evaluate whether the trends are 
significant. Uncertainties in trends were captured by a 
Monte Carlo analysis. A two-sample t-test applied to 
the two pairs of populations to quantify if significant 
differences in 𝐏 exist between the beginning and end 
of the datasets. In this study, p–value < 0.1  was 
adopted to be statistically significant. 

 
4. Results 
a) Changes in the mean spectrum  

Using the techniques similar to WK99, Fig. 2 
presents the mean normalized antisymmetric and 
symmetric parts of the 𝐏 spectrum using both the OLR 

and 𝑇𝑏 datasets. Both datasets are remarkably similar 
to each other and capture the peak in 𝐏 corresponding 
to different types of wave activity observed in the 
tropical latitudes. These features are consistent with 
similar works published in the literature (e.g., Roundy 
2018; WK99). While the spectra obtained from the OLR 
and 𝑇𝑏 datasets may be similar, they are not identical 
given the nature of the datasets. For instance, around 
𝑘 = 14 the OLR dataset shows a local increase in 𝐏 
(Fig. 2a–b) and WK99 attributes this inconsistency to 
the polar orbiting satellite making approximately 14 
swaths around the globe per day. By definition, the 
higher resolution geostationary satellites used to 
create the 𝑇𝑏 dataset does not move relative to a fixed 
geographical location on the Earth, and instead uses 
multiple geostationary satellites to obtain a merged 
global picture (Knapp et al. 2011). In comparison to the 
OLR dataset, 𝑇𝑏  dataset produces a smoother 𝐏 

spectrum with fewer spurious peaks (Fig. 2c–d).  
 
In Fig. 3, we subtracted the mean of the first nine 

years from the mean of the most recent nine years of 
the 𝐏 spectrum to identify any systematic shifts in the 
𝐏 spectrum. The results suggest a shift in 𝐏 where the 

magnitude of 𝐏 has increased in higher 𝑓 signals (0.2–
0.5 cycles per day; cpd, or 2 to 5-day period), and 
decreased in lower 𝑓 signals (0.0–0.2 cpd, or >5-day 
period). In order to establish whether these trends are 
stable and significant in time, a latitude mean linear 
regression analysis was applied to the 𝐏  spectrum 
(Fig. 4). Consistent with the results shown in Fig. 3–4 
shows relatively weak yet significant increases in 𝐏 
between 0.2–0.5 cpd. While there are some patches of 
blue in Fig. 4 between 0.2–0.5 cpd indicative of a 
decreasing trend in 𝐏, these patches are characterized 
by an insignificant (p-value > 0.1) linear trend. Between 
0–0.2 cpd, we observed a mixture of both positive and 
negative trends in 𝐏 in Figs. 3–4. Overall, over 29% of 
the trends in Fig. 4 were statistically significant.   

 
b) Trends in wave activity  

Since the 𝐏  spectrum captures many scales of 
motion observed in the tropical latitudes, by dividing 
the 𝑓  and wavenumber 𝐏  spectrum into different 
regions dominated by a particular phenomenon 
(WK99; Straub and Kiladis 2002; Roundy and Frank 
2004, Kaladis et al. 2005, 2009), we may estimate how 
the characteristics of signals in bands of the wave 
number 𝑓 domain associated with a given wave may 

have changed. In this study, we analyzed trends in five 
different kinds of disturbances observed in the tropical 
latitudes i.e., MJO, ER waves, MRG waves, Kelvin 
waves, and TD-type disturbances from both the OLR 
and 𝑇𝑏  datasets (Fig. 5). The trends in 𝐏 for a given 
wave type closely follow the predominant trend for a 
given 𝑓 since there is little variability across 𝑘 for ~0.2 
cpd or higher (Fig. 4). In general, lower 𝑓 (0–0.2 cpd) 

is losing 𝐏, and higher 𝑓  (0.2–0.5 cpd) is gaining 𝐏. 
The MJO and ER wave suggest decreasing trends in 
𝐏, but only the symmetric part of the 𝐏 spectrum for the 
𝑇𝑏 dataset showed a statistically significant decrease. 

The other three wave types that are dominated by 
relatively higher 𝑓 and are characterized by localized 
regions of significant 𝐏 increases below 0.2 cpd mostly 
show statistically significant increasing trends in 𝐏.  

 
As the spatial structure and trends obtained 

from the OLR and 𝑇𝑏 datasets compare well with each 

other (Raghavendra et al. 2018a), we were not 
surprised to observe similar trends from the two 
datasets (Figs. 2–5).  Figure 6 provides confidence 
thresholds for the slope of the curves in Fig. 5. Since 
the amplitude of the interannual variability is relatively 
high when compared to the net long-term change in 𝐏 
(i.e., low signal to noise ratio), we observe a relatively 
large range of values making up the 5–95% confidence 
interval. Except for the symmetric part of the MJO and 
ER wave for the OLR dataset that coincidently have the 
highest p–value (least significant) linear trend in Fig. 5, 
the confidence intervals concur with the net change in 
sign for the observed trends in the 𝐏 spectrum (Fig. 5–
6). As expected from the results illustrated in Figs. 3–
4, the MJO and ER wave have lost 𝐏 , and Kelvin 
waves, MRG, and TD–type waves have gained 𝐏. The 
linear trend analysis (Fig. 5) and confidence range (Fig. 
6) also support the above conclusion.  
 
c) Trends in variance and trends in the leading modes 

of variability 
We have thus far shown time trends in spectral 

power (Figs. 3–6). Furthermore, the spatial structure 
corresponding to the trends in OLR variance (Fig. 7) 
appears to be concentrated near regions characterized 
by a peak in annual mean variance presented in Kiladis 
et al. (2009). However, there is a possibility that trends 
in background noise may be strongly projecting onto 
the trends in spectral power (Figs. 3–6), and thus 
making it unclear whether wave signals are changing 
in a similar manner. To address this concern, an EOF 
analysis was conducted to evaluate if patterns in the 
data conforming to the structures of convectively 
coupled waves change amplitude with time, via 
assessment of trends in variance of the PC-1 
timeseries.  

 
The spatial structure of the leading EOF (EOF-1) 

explains the maximum variance (Fig. 8) and the EOF-
1 spatial pattern for MRG waves (Fig. 8d) closely 
resembles the MRG wave pattern in Kiladis et al. 
(2009). Since the amplitude of a leading EOF mode 
and preferred structure pattern can change over time, 
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we compared the same analysis based on EOFs 
computed based on the first (1979–1993) and last 
(2002–2016) 15-year periods from the OLR dataset 
and found negligible differences in the spatial structure 
of the leading EOFs, and trends in variance 
corresponding to PC1 were not statistically 
distinguishable from the trends in PCs based on EOF 
patterns computed from the entire dataset (Figs. 8–9).  
The trends in variance corresponding to PC1 for five 
different wave types are shown in Fig. 9. In this figure, 
we observe large interannual variability, a significant 
decrease in variance for the MJO band, and a 
significant increase in variance for KWs, MRG waves, 
and TD-type disturbances. An insignificant increasing 
trend is observed for ERWs. The trends from Fig. 9 
compare favorably with Figs. 5–6, and Fig. 7, and we 
find mutually supporting evidence for four wave types 
(except ERW where the trend lines are not statistically 
significant). In summary, the analysis presented in 
Figs. 8–9 shows that signals that project onto the 
leading EOF mode trend similarly to variance in the 
filter bands themselves and proving that the waves 
themselves are part of the trend. So, regardless of 
whether background noise is trending, the wave 
signals are trending in the same direction as variance 
in the bands.  

 
d) Spatial trends in wave activity 

This sub-section is motivated because we now 
understand changes in the 𝐏  spectrum for over 35 

years, and the trends in 𝐏 associated with five tropical 
wave types, but we lack physical insight on how 
individual wave characteristics (i.e., trends in the 
number of events, and the duration of an events) 
corresponding to the five different spectral band many 
have changed. Furthermore, understanding spatial 
trends in wave activity, and the mean duration of the 
active period corresponding to a given wave may help 
us better understand mechanisms regulating tropical 
convection and precipitation. By identifying the 
convective phase for different wave types and 
calculating the occurrence and mean duration of an 
event (Fig. 10), we find those wave bands 
characterized by an increase in power at high 𝑓 (e.g., 
KWs, MRG, and TD-type) show a significant upward 
trend in the mean number of events and accompanied 
by a decrease the mean duration of an event. There 
are fewer grid points showing significant trends for the 
MJO and ERW spectral bands, but the spatial 
distribution of trends in event occurrence and duration 
(Fig. 10 a–b and c–d) suggests a compensating effect 
between frequency and duration resulting in a 
tendency towards a homogeneous spatial field. To 
further elaborate, considering the MJO band, for 
instance, there is good agreement between observed 
trends (Fig 10a) and modeling efforts using GCMs 
(e.g., Jones and Carvalho 2006; Arnold et al. 2015; 
Song and Seo 2016; Adams et al. 2017) in the 
increased occurrence of MJO events attributed to 
global warming. While it is generally argued that MJO 
intensity will likely increase in a warmer climate, both 
observations and modeling studies discuss 

considerable uncertainties with regard to intensity and 
duration changes in the MJO. Furthermore, there are 
non-negligible biases in GCM realizations of the mean 
background state of the tropical atmosphere. Some of 
these issues include a cold bias for SSTs in 
atmosphere-ocean coupled runs, the double ITCZ 
problem (e.g., Lin 2007), and overestimated tropical 
OLR variability (e.g., Arnold et al. 2015). Therefore, 
while Fig. 5a–b suggests a negative trend in 𝐏 
corresponding to the MJO, this does not imply a 
weakening MJO, or less frequently occurring MJO. 
However, the reduction in 𝐏 corresponding to the MJO 
does imply a reduced variance in the MJO (Fig. 7a), 
therefore either a reduction of amplitude, and/or a 
reduction of the longevity of active periods must be 
occurring (Fig. 10a–b). Fig. 3–4 suggests a shift in the 
MJO band towards higher frequencies, but additional 
analysis beyond the scope of this paper on how 
changes in the combination of the amplitude and/or 
longevity of active periods of equatorial waves both on 
a regional and global scale may explain the observed 
trends in 𝐏.   

 
e) ENSO’s impact on the power spectrum   

Variability in ENSO is known to strongly 
influence tropical convection and a key player in 
climate variability (e.g., WK99; Neale et al. 2008). Not 
surprisingly, since tropical wave activity and convection 
are strongly coupled, variability in ENSO could strongly 
influence tropical waves and the trends in wave activity 
we observed in Figs. 3–6. In order to better understand 
the impact of ENSO on the 𝑓  and 𝑘  𝐏 spectrum, we 
constructed difference plots (Fig. 11) between the 
mean spectrum for a given ENSO state and the total 𝐏 

spectrum (Fig. 2). Changes in 𝐏 associated with El–
Niño include enhanced KW, an increase in higher 𝑓, a 
decrease in lower 𝑓  for eastward propagating wave 
activity, and weaker TD-type disturbance activity. La-
Niña shows the opposite effects. No coherent patterns 
in wave activity were observed for ENSO neutral state. 
While the six individual panels are significantly different 
from each other both in terms of structure and power, 
we are not convinced that the structure of the 𝐏 
spectrum corresponding to different phases of ENSO 
could possibly produce the trends in 𝐏 shown in Figs. 
3–6. 

 
5. Conclusions and Remarks  

In this study, the 𝑓 and 𝑘 𝐏 spectrum for the tropical 
latitudes (i.e., 15°N–15°S) was constructed using the 

method outlined by WK99 for OLR data obtained from 
polar orbiting satellites (Liebmann and Smith 1996), 
and 𝑇𝑏  data obtained from geostationary satellites 

(Knapp et al., 2011). Both datasets produced 𝐏 spectra 
that are similar to one another (Fig. 2). Since the 
fundamental goal of the paper was to identify changes 
in the 𝑓  and 𝑘  𝐏  spectrum, we subtracted the 𝐏 
spectrum of the first nine years from that of the last nine 
years to investigate possible changes in the 𝐏 
spectrum (Fig. 3). This exercise revealed a significant 
decrease in 𝐏 from ~0–0.2 cpd, and an increase in 𝐏 
from ~0.2–0.5 cpd. The significance of the trend was 
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also established via a linear regression (Fig. 4). Since 
different parts of the 𝑓  and 𝑘  𝐏  spectrum are 

associated with different waves observed in the tropical 
latitudes (e.g., Kiladis et al. 2009), we averaged the 𝐏 
corresponding to regions of the spectrum known to be 
occupied by signals from particular wave types and 
examined the trends.  

 
Given the low signal to noise ratio observed with the 

𝐏 trends in Fig. 5 and to quantify uncertainties in the 
results, a Monte Carlo analysis was carried out (Fig. 6). 
We found the bands of the MJO and the ER wave were 
characterized by a decreasing trend in 𝐏 , and the 
bands of MRG waves, Kelvin waves, and TD-type 
disturbances were characterized by increasing trends 
in 𝐏 (Fig. 5–6). From Figs. 3–5, we infer an increase in 
variability at higher frequencies attributed to an 
increase in 𝐏 and vice-versa. To further evaluate the 
validity of the change in 𝐏  reported thus far and to 
ensure the changes in spectral power were linked to 
the waves and not the background “noise”, we 
evaluated trends in band filtered daily OLR anomaly 
data from 1979–2016 for variance (Fig. 7), the 
structure of the leading EOF pattern (Fig. 8), and trends 
in the variance corresponding to PC-1. The PC 
analysis shows that signals that project onto the 
leading EOF mode trend similarly to variance in the 
filter bands themselves and demonstrate that the 
waves themselves are part of the trend. Therefore, 
concurrence between the time trends in the variance 
corresponding to the first principle component (PC1; 
Fig. 9) and spectral power (Figs. 5–6) should bolster 
our confidence in the results and help us draw to the 
conclusion that the trends in spectral power for each 
wave type is a consequence of changes in the wave 
characteristics, and not just background noise.  

 
A possible relationship between changes in 𝐏 and 

changes in the frequency of occurrence and mean 
duration of wave events was also presented (Fig. 10). 
Results suggests the it may be possible to attribute that 
the increase in power at high 𝑓 (e.g., KWs, MRG, and 
TD-type) to a significant increase in the occurrence of 
high frequency disturbances, accompanied by a 
decrease the mean duration of an event. The results 
for a decrease in power at low 𝑓 (e.g., MJO and ERW) 
is difficult to explain given non-homogeneous trends in 
the mean duration of the events.  Finally, we 
demonstrate the influence of ENSO on the 𝐏 spectrum 
(Fig. 11) and argue that the trends in 𝐏 documented in 

Figs. 3–5 are difficult to explain from the standpoint of 
variability in ENSO.  

 
Our future research endeavors include diagnosing 

changes in the characteristics of tropical waves (e.g., 
𝑓 , amplitude, and persistence), and identifying 
mechanisms resulting in the observed change in the 𝐏 
spectrum. The subset of our community that 
specialized in climate variability and change has 
published a considerable spectrum of works to better 
understand Earth’s atmosphere and ocean dynamics 
across different spatio-temporal scales. Therefore, 

there are many possible future research avenues to 
understand mechanisms linked to changes in tropical 
waves and the associated 𝑓-wavenumber 𝐏 spectrum 
presented in this paper (Fig. 3–6). Some of these 
research avenues and possible mechanisms that may 
explain changes and trends in tropical wave activity 
include: 

• The impacts of a narrowing ITCZ, changes in the 
breakdown of the ITCZ, and expanding Hadley cell 
(e.g., Byrne and Schneider 2016; Raghavendra and 
Guinn 2016). 

• Changes in the profile of ocean heat transport and 
associated changes in the Hadley cell (Rencurrel 
and Rose 2018).   

• An observed enhancement in the tropical Walker cell 
circulation associated with an increased temperature 
contrast between regions within the tropical latitudes 
(e.g., Kosaka and Xie 2013; Meng et al. 2012; Hua 
et al. 2016; Ma and Zhou 2016; Zhang and 
Karnauskas 2017). 

• Localized and non-localized convection/heating 
within the tropical latitudes (e.g., Neale and Hoskins 
2001; Raghavendra and Guinn 2016; Raghavendra 
et al. 2018a) and associated Gill–Matsuno and 
tropical waves response to steady tropical heating 
(e.g., Cook and Vizy 2016). 

• Extratropical influences, especially given recent 
studies highlighting arctic amplification and changes 
in the midlatitude Rossby wave train (e.g., Barnes 
and Polvani 2015) can alter the eddy momentum 
fluxes between the tropical and extratropical 
latitudes and consequently impact the monsoon and 
the large scale tropical circulation (e.g., Schneider 
and Bordoni 2008; Bordoni and Schneider 2010).    

• Teleconnections such as Pacific decadal oscillation 
and North Atlantic oscillation may also prove to be 
useful endeavors to better understand convectively 
coupled equatorial waves.  

 
Finally, current climate models are relatively poor in 

capturing observed tropical precipitation 
characteristics (e.g., Dai 2006) but may capture the 
dynamics of free and convectively coupled tropical 
waves to varying degrees of accuracy (e.g., Hung et al. 
2013). Understanding the linkage between tropical 
waves and precipitation, and using projected changes 
in tropical wave activity to estimate precipitation 
change maybe a worthwhile exercise as well. A 
hierarchical modeling approach (e.g., Isca; Vallis et al. 
2018) ranging from idealized to fully coupled GCMs 
may prove particularly useful in isolating mechanisms 
linked to the observed and possible future changes in 
the 𝑓 -wavenumber 𝐏  spectrum.  From a climate 
change and societal impact perspective, analyzing 
precipitation changes linked to the observed and 
projected changes in the dynamics of tropical wave 
activity over may offer insights on the water budget and 
availability over tropical latitudes.  
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Figures 

 
Figure 1: Global tropical convection (15°N–15°S) from 1979–2016 using NOAA’s daily Interpolated OLR dataset 

(Liebmann and Smith 1996). a) Daily mean OLR, b) the difference in OLR between 1979–1987 and 2008–2016, 
and c) linear trends in OLR obtained after removing the seasonal cycle from the OLR dataset. The black dots 
indicate trends that are statistically significant (p-value<0.1).   

 

 
Figure 2: The frequency-wavenumber power spectrum diagram normalized by the smoothened background spectrum 

similar to the technique developed by WK99. The individual panels represent the antisymmetric power spectrum 
using the a) OLR and c) 𝑇𝑏 datasets, and symmetric power spectrum using the b) OLR and d) 𝑇𝑏 datasets. 
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Figure 3: Observed shift in the log𝑒 spectral power calculated by taking the difference between the mean normalized 

power for 2008–2016 and 1979–1987 (for OLR dataset)/1982–1990 (for 𝑇𝑏  dataset). The individual panels 
represent the antisymmetric power spectrum using the a) OLR and c) 𝑇𝑏  datasets, and symmetric power 

spectrum using the b) OLR and d) 𝑇𝑏 datasets. A two-sample t-test applied to the two pairs of populations proved 
that the power for 2008–2016 is significantly different from the power for 1979–1987 at the 1% significance level.  

 

 
Figure 4: Linear trends in the log𝑒 spectral power (× 10−3) from 1979–2016 for the OLR dataset and 1982–2016 for the 

𝑇𝑏  dataset. The individual panels represent the antisymmetric power spectrum using the a) OLR and c) 𝑇𝑏 
datasets, and symmetric power spectrum using the b) OLR and d) 𝑇𝑏 datasets. The black dots indicate trends 

that are statistically significant (p-value<0.1).   
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Figure 5: Interannual variations in the regional (see Fig. 2 for domain) mean log𝑒 power spectrum (red for antisymmetric 

part, and blue for symmetric part) corresponding to different wave types in the WK99 frequency-power spectrum 
diagram using the (a–e) OLR, and 𝑇𝑏 datasets. The slope, and the p-value (p-val) of the linear trend lines are 

shown in the box for each panel. 
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Figure 6: A Monte Carlo analysis carried out by randomly rearranging the data points for each interannual variability 

curve 1,000 times in Fig. 5 without repetition in order to quantify uncertainties in the slope (units: 
× 10−2 loge(𝐏) 𝑦𝑒𝑎𝑟−1 ) of the linear trend line shown in Fig. 5. The upper (95th percentile) and lower (5th 
percentile) limits of the uncertainty is represented by the top and bottom whiskers respectively, and the slope 
values for the symmetric (S) and antisymmetric (A) components from Fig. 5 are represented using five symbols 
for each type of disturbance using both the OLR and 𝑇𝑏 datasets.  
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Figure 7: Trends in OLR variance calculated by squaring the spectrally filtered OLR anomaly for a) the MJO, b) ERW, 
c) KWs, d) MRG, and e) TD from 1979–2016. The black dots indicate trends that are statistically significant (p-
value<0.1).   
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Figure 8: The spatial structure corresponding to the leading EOF for a) the MJO, b) ERW, c) KWs, d) MRG, and e) TD 
obtained by first filtering the daily OLR anomaly data from 1979–2016 for the five different wave bands, and then 
applying an EOF analysis. The percentage variance explained by the leading EOF are show in each panel.  
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Figure 9: Interannual variability of the variance corresponding to first PC of the band filtered daily OLR anomaly data 
from 1979–2016 (blue line) for a) the MJO, b) ERW, c) KWs, d) MRG, and e) TD. The slope, and the p-value (p-
val) of the linear trend lines (red line), and the result and p-value from the Mann-Kendall trend test are shown in 
the box embedded in each panel. The spatial structure corresponding to the leading EOF for each wave is shown 
in Fig. 8. 
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Figure 10: The mean number, and duration of events corresponding to (a–b) the MJO, (c–d) ERW, (e–f) KWs, (g–h) 
MRG, and (i–j) TD from 1979–2016 using daily OLR anomalies. The mean frequency and duration of events 
was calculated by applying a spectral filter for different wave types, and then using the negative OLR anomaly 
time series at each grid point to generate the necessary statistics. A linear regression and t-test was applied to 
determine regions showing significant (p<0.1) increasing (black dot) and decreasing (white cross) trends.  
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Figure 11: Difference in 𝐏 constructed using NOAA’s OLR dataset for each ENSO state for the antisymmetric and 

symmetric parts of the spectrum (a–f) relative to the mean power spectrum in Fig. 2. A two-sample t-tests shows 
significantly differences at the 1% level between panels a–f. g) The Niño 3.4 index derived from ERSSTv5. The 
blue and green lines represent the ±0.75 and ±0.25 thresholds used to segregate the time windows to obtain a 
composite spectrum for a particular ENSO state. The number of time windows in each ENSO state is shown in 
bold numbers.   
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