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1. INTRODUCTION 
 

Small unmanned aircraft systems (sUAS) are 
increasingly being used for a variety of applications 
due to their low cost, ability to fly in dangerous or 
inaccessible areas, and operational ease. One area 
in which sUAS are being used extensively is 
atmospheric research. Examples of current studies 
in which these aircraft have played a role are 
tornado and hurricane formation (Avery 2015), 
lower atmospheric boundary layer characterization 
(Reuder 2012), dynamic soaring (Quindlen 2013), 
and urban wind field mapping (Cybyk 2009).  

Wind information is a critical aspect of many of 
these studies and also an important factor 
in aircraft performance and control. Using sUAS as 
a means of wind measurement is more 
advantageous than traditional ground wind 
sensing, such as from a tower, due to the ability to 
measure in any flight pattern and at any location, 
while still being able to capture temporal changes 
at high sampling rates (Weibel 2015). 

However, a few difficulties arise when using 
sUAS for wind sensing. First, the low payload 
capacity and small size limit the type and amount of 
wind sensing equipment that can feasibly be placed 
on board. Some companies have created micro 
wind velocity data acquisition systems with lower 
sizes and weights for use on sUAS (Aeroprobe 
2018), but these systems cost thousands of dollars, 
which is often more expensive than the sUAS 
airframe itself. Furthermore, commonly used wind 
velocity sensors such as multi-hole probes and hot-
wire anemometers must be calibrated using known 
wind velocity information (e.g. from a wind tunnel) 
before they can be used. These sensors do not 

measure inertial wind, but rather the wind velocity 
relative to the aircraft.   

An additional difficulty that arises is a lack of 
control of sUAS in turbulent environments. Small 
UAS have lower inertia, lower wing loading, smaller 
masses, and smaller wingspans than their manned 
counterparts, which results in these aircraft having 
a harder time maintaining control in windy 
conditions (Pisano 2009). In the event of complete 
loss of control, there is a high likelihood of damage 
to any protruding sensors.  

For these reasons, alternative methods of wind 
measurement have been proposed and studied 
using smaller and cheaper sensors that are 
integrated inside the fuselage or flush with the 
aircraft. Many of these methods have depended on 
velocity and attitude estimates from the global 
positioning system (GPS) and inertial measurement 
unit (IMU). In the presence of strong wind, 
significant errors are induced in attitude and aircraft 
velocity measurements from these sensors (Weibel 
2015), which suggests that the use of cheap 
sensors with little or no redundancy comes at the 
expense of accuracy in wind measurements.  

The primary focus of this paper is to propose a 
method of inertial wind velocity state estimation for 
a fixed-wing UAS that does not use any air flow 
probes, but rather utilizes acceleration information 
from a distributed accelerometer sensor suite. This 
method eliminates the aforementioned difficulties 
with current wind measurement methods on sUAS 
because distributed accelerometers are 
lightweight, robust, inexpensive, and redundant. 
Furthermore, distributed accelerometers provide 
angular acceleration information that can be used 
to extract components of the wind velocity gradient 
tensor, which allows for improved resolution of the 
3D wind vector estimates.  Wind velocity gradient 
information cannot be obtained with a single IMU 
nor multi-hole probe.  

The wind velocity estimation technique 
discussed in this paper utilizes a linearized 
aerodynamic model of the Tempest UAS and the 
structure of the Dryden Turbulence Model in order 
to make wind velocity estimates. This estimation 
technique was compared with and without 
acceleration feedback in simulation using Simulink 
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and MATLAB. The remainder of this paper will 
discuss the wind velocity state estimation 
methodology, the simulation setup, and the results 
as compared to known simulated wind velocities.      
 
2. WIND VELOCITY STATE ESTIMATION 

 
A major advantage of state estimation is the 

ability to accurately estimate unknown or 
unmeasurable states of a system despite noisy 
measurements or errors in the system model.  This 
can be achieved through the use of a state 
observer, such as a Kalman Filter, which reduces 
the error between the system model and the known 
states obtained from sensor measurements. Many 
of the existing wind velocity estimation studies that 
have been employed on sUAS have utilized the 
relationship between wind speed, airspeed, and 
ground speed (i.e. the wind triangle), which requires 
an airspeed sensor (Cho 2011, Johansen 2015).  
As mentioned prior, these sensors can be 
prohibitive for use on sUAS in terms of cost, size, 
and weight. 

The wind velocity estimation technique 
described in this study does not require an airspeed 
sensor, but rather relies on a linearized state space 
model of the aircraft and wind to perform state 
estimation through a Kalman Filter.  Typical linear 
state space models are of the form, 

 
𝐱̇ = 𝐀𝐱 + 𝐁𝐮 + 𝐆𝐝 

𝐲 = 𝐂𝐱 + 𝐃𝐮 
 
where 𝐱 represents the state vector comprised of 
the states of the system (e.g. position, velocity), 𝐮 
is the input vector, 𝐝 is a vector that describes a 
perturbation from an equilibrium condition, 𝐲 is an 
output vector, 𝐀,𝐁,𝐆 are matrices that define the 
dynamic system and 𝐂,𝐃 are matrices that describe 
the output from sensors, where 𝐃 is generally set to 
zero and 𝐂 is an identity matrix if all states are 
measured by sensors. 
 
2.1 Aircraft State Space Models 

 

 For fixed-wing aircraft, the linearized state 
space model comes from Taylor expanding the 
aircraft kinematic and dynamic equations of motion 
about an equilibrium (or trim) condition.  Because 
this derivation is well documented in the literature 
(see Stevens 2016, Beard 2012, or Schmidt 2012), 
it will not be reiterated in this paper.  It suffices to 
say that the nonlinear aircraft equations of motion 

are derived from kinematics, rigid-body dynamics, 
and the aerodynamic, propulsive, and gravitational 
forces and moments on the aircraft. 
Fixed-wing aircraft dynamics can be decomposed 
into lateral and longitudinal models, where lateral 
refers to roll, heading, and side-to-side motion and 
longitudinal refers to pitch, vertical, and forward 
motion.  For most fixed-wing airframes, the coupling 
between these two directions is small (Beard 2012).  
The wind velocity state observer used in this work 
uses reduced order lateral and longitudinal models, 
which are described by the following states and 
inputs: 
 

𝐱𝑙𝑎𝑡 = [𝑣 𝑝 𝑟 𝜙]𝑇         𝐱𝑙𝑜𝑛 = [𝑢 𝑤 𝑞 𝜃]𝑇 

𝐮𝑙𝑎𝑡 = [𝛿𝑎   𝛿𝑟]
𝑇              𝐮𝑙𝑜𝑛 = [𝛿𝑒   𝛿𝑡]

𝑇 
     
where 𝑢, 𝑣, 𝑤 represent the inertial aircraft 
translational velocities projected onto the aircraft 
body frame of reference (see Fig. 1), 𝜙, 𝜃, 𝜓 are the 
aircraft attitude angles: roll, pitch, and yaw (also 
called Euler angles), and 𝑝, 𝑞, 𝑟 are the angular 
rates with respect to the aircraft body frame.  The 
inputs, 𝛿𝑒 , 𝛿𝑎 , 𝛿𝑟 are the elevator, aileron, and 
rudder deflections, respectively, and 𝛿𝑡 is the 
throttle percentage from maximum. Each of these 
terms has the trim value subtracted from it.   
 

 

FIG. 1. Aircraft body frame of reference. 

 
2.2 Wind Velocity States 

 

In simulations of aircraft motion, the wind 
velocity enters in through 𝐝,  

 
𝐝𝑙𝑎𝑡 = [𝑣𝑑   𝑝𝑑  𝑟𝑑]𝑇       𝐝𝑙𝑜𝑛 = [𝑢𝑑   𝑤𝑑   𝑞𝑑]𝑇  

 

Where 𝑢𝑑 , 𝑣𝑑 ,𝑤𝑑  is the inertial translational wind 
velocity in aircraft body coordinates and 𝑝𝑑 , 𝑞𝑑 , 𝑟𝑑 
are three components of the wind velocity gradient 
tensor projected in the aircraft body frame which will 
be referred to as angular wind velocity hereafter,  

(2.1a) 

(2.1b) 

(2.2a) 

(2.2b) 

(2.3) 



 

 

 

𝑝𝑑 =
𝜕𝑤𝑑

𝜕𝑦
          𝑞𝑑 =

𝜕𝑤𝑑

𝜕𝑥

          𝑟𝑑 =
𝜕𝑣𝑑

𝜕𝑥
      

 

This vector is often generated through a 
turbulence model, such as the Dryden Turbulence 
Model, and given as an additional input into the 
aircraft system.  In order to estimate the wind 
velocity through a state observer, however, it is 

necessary to represent 𝐝 as a state in the system.  
This is most easily accomplished by representing 𝐝 
in a state space model and augmenting the wind 
velocity states onto 𝐱.  The total wind velocity vector 
can be represented by,  
 

𝐝 = 𝐝𝑠 + 𝐝𝑔 

 
where 𝐝𝑠 represents a steady ambient wind and 𝐝𝑔 

is a stochastic wind component or “gust” that can 
be modeled by passing white noise through a 
shaping filter. To illustrate this, say that the total 
wind velocity can be represented in the following 
manner,  
 

𝐱̇𝑠 = 0 
𝐱̇𝑔 = 𝐀𝑔𝐱𝑔 + 𝐁𝑔𝐧 

𝐝 = 𝐱𝑠 + 𝐂𝑔𝐱𝑔 

 
Then, one can augment Eqn. 2.1a with wind 
velocity ‘’states’’ like so,  
 

[

𝐱̇
𝐱̇𝒈

𝐱̇𝒔

] = [

𝐀 𝐆𝐂𝒈 𝐆

𝟎 𝐀𝒈 𝟎

𝟎 𝟎 𝟎

] [

𝐱
𝐱𝒈

𝐱𝒔

] + [
𝐁
𝟎
𝟎
]𝐮 + [

𝟎
𝐁𝒈

𝟎

]𝐧 

 

𝐲̃ =  [
𝐂
𝟎
𝟎
] [

𝐱
𝐱𝒈

𝐱𝒔

] 

 
For ease, this will furthermore be represented as,  
 

𝐱̇̃ = 𝐀̃𝐱̃ + 𝐁̃𝐮 + 𝐁̃𝐠𝐧 

𝐲̃ = 𝐂̃𝐱̃ 
 

By incorporating the wind term in this fashion, the 
wind states 𝐱𝑠 and 𝐱𝑔 can be estimated through a 

state observer.  
 
2.3 Wind Velocity State Observer 
 

The state observer works by reducing the error 
between an estimated state vector, 𝐱̂, and the 

actual state vector exponentially in time.  By 
creating an estimated state equation of the form,  
  

𝐱̇̂ = (𝐀̃ − 𝐋𝐂̃)𝐱̂ + (𝐁̃ − 𝐋𝐃̃)𝐮 + 𝐋𝐲̃ 

 
the rate of change of the error between 𝐱̃ and 𝐱̂ is  
 
 

𝐞̇ =  𝐱̇̃ − 𝐱̇̂ 

                           = (𝐀̃ − 𝐋𝐂̃)𝐞 + 𝐁̃𝒈𝐧 

 
By assuming that the noise, n, is white noise and 
has a mean of zero, then observer gain, 𝐋, can be 
optimally chosen through a Riccati equation such 
that the error is minimized to a steady state value. 
In this study, the value of 𝐋 was selected using 
MATLAB’s function, kalman.  

In this form, the state observer is able to make 
wind velocity estimates without acceleration 
feedback, but the information contained in 
accelerations provides significant improvement in 
error when fed back through the observer.   
 
2.4 Acceleration Feedback 

 
The acceleration terms come in through the 

output vector, 𝐲̃, by appending the rate of change of 
the aircraft states, 𝐱̇, to the other known sensor 
measurements,  

 

𝒚̃𝒂𝒄𝒄𝒆𝒍 = [𝐂𝐱
𝐱̇

] = [
𝐂𝐱

𝐀𝐱 + 𝐁𝐮 + 𝐆𝐝
] 

 
Expressed in terms of 𝐱̃, this equation becomes,  

 

𝒚̃𝑎𝑐𝑐𝑒𝑙 = [
𝐂 0 0
𝐀 𝐆𝐂𝐠 𝐆

0 0 0

] [

𝐱
𝐱𝒈

𝐱𝒔

] + [
𝟎
𝐁
𝟎
]𝐮            

 
Replacing this value for 𝐲̃ in the estimated state 
dynamics shown in Eqn. 2.9 ultimately improves the 
wind velocity estimates because of the additional 
state information being provided from sensors.   
 In order to obtain the rate of change of the 
aircraft states from distributed accelerometers, it is 
necessary to understand the relationship between 
the two.  Gremillion et al. (2016) showed that an 
accelerometer can be considered a point along a 
rigid body.  The total acceleration of the point is 
 
𝐚𝑃/𝑂 = 𝐚𝑂′/𝑂 + 𝐚𝑃/𝑂′ + 𝜶 × 𝐫𝑃/𝑂′ + 2𝝎 × 𝐯𝑃/𝑂′      

+ 𝝎 × (𝝎 × 𝐫𝑃/𝑂′)                                         

    

(2.4) 

(2.5) 

(2.6a) 

(2.6b) 

(2.6c) 

(2.7a) 

(2.7b) 

(2.8a) 

(2.8b) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 



 

 

where 𝑂 represents the origin of a fixed coordinate 
frame, 𝑂′ represents the center of gravity (CG) of a 
moving rigid body, and 𝑃 represents a point on the 
rigid body, such that r𝑂′/𝑂 refers to the distance 

between the two coordinate frames and r𝑃/𝑂′ refers 

to the distance between a point on the rigid body 
and the CG (see Fig. 2).  The first two terms 
represent the translational acceleration, followed by 
Euler, Coriolis, and centripetal acceleration terms, 
respectively.   
 

 

FIG. 2. Diagram of a coordinate frame of a moving rigid body. 

Gremillion 2016. 

 
When this equation is expressed in body 
coordinates, the point on the body does not move 
with respect to the body’s coordinate axes, thus the 
second and fourth terms reduce to zero.  This 
simplifies the equation to:  
 

𝐚𝑃 𝑂⁄ = 𝐚𝑂′ 𝑂⁄ +  𝜶 × 𝐫𝑃 𝑂′⁄  

                 + 𝝎 × (𝝎 × 𝐫𝑃/𝑂′) 

      
Let 𝐫𝑃/𝑂′ represent the position vector from the CG 

of an sUAS to a uniaxial accelerometer.  This can 
be denoted by: 
 

𝐫𝑖 = [𝑥𝑖   𝑦𝑖  𝑧𝑖]
𝑇 

 
where the subscript represents the 𝑖th 
accelerometer and the position coordinates are 
given in the aircraft body frame of reference.  In a 
similar manner, let 𝐚𝑃/𝑂 be designated by 𝐚𝑖, which 

refers to the total inertial acceleration of the 
accelerometer projected onto body coordinates.  
Eqn. 2.14 can then be written in terms of the aircraft 
angular rates and accelerations as, 
 

𝒂𝑖 = [

𝑎𝑥 − (𝑞2 + 𝑟2)𝑥𝑖 + (𝑝𝑞 − 𝑟̇)𝑦𝑖 + (𝑝𝑟 + 𝑞̇)𝑧𝑖

𝑎𝑦 + (𝑝𝑞 + 𝑟̇)𝑥𝑖 − (𝑝2 + 𝑟2)𝑦𝑖 + (𝑞𝑟 − 𝑝̇)𝑧𝑖

𝑎𝑧 + (𝑝𝑟 − 𝑞̇)𝑥𝑖 + (𝑞𝑟 + 𝑝̇)𝑦𝑖 − (𝑞2 + 𝑝2)𝑧𝑖

]   

 
 
The actual output of the accelerometer, 𝜂𝑖, is 
related to this acceleration by 
 

𝜂𝑖 = 𝜅𝑖𝒆̂𝑖
𝑇𝒂𝑖 + 𝑏𝑖 

 
where 𝜅𝑖 is a sensitivity gain term, 𝑏𝑖 is the 

accelerometer bias and 𝒆̂𝑖
𝑇 is the orientation of the 

accelerometer.  The orientation refers to the 
projection of body frame accelerations onto the 
sensitivity axes of the accelerometer.   

By defining an acceleration state vector, 𝐱𝑎, 
such that  

 

𝐱𝑎 = [𝑎𝑥    𝑎𝑦   𝑎𝑧  𝑝̇  𝑞̇  𝑟̇  𝑝2  𝑞2  𝑟2  𝑝𝑞  𝑝𝑟  𝑞𝑟]
𝑇
  

 
 
where 𝐚𝑐𝑔 = [𝑎𝑥  𝑎𝑦 𝑎𝑧] represents the translational 

acceleration of the aircraft projected into body 
coordinates, 𝑝̇, 𝑞̇, 𝑟̇ are angular accelerations, and 
the rest are cross terms that are unused in the state 
observer, the accelerometer output can be rewritten 
as,  
 

𝜼 =

[
 
 
 
 
𝜂𝟏

𝜂2

.

.
𝜂𝑛]

 
 
 
 

= 𝐂𝑎𝐱𝑎 + 𝐛 

 
where 𝐂𝑎 is a matrix comprised of the sensitivity 
gain and orientation of each accelerometer.  
Rearranging this equation and taking the pseudo-
inverse yields a relationship between the 
acceleration state vector and the accelerometer 
output,  
 

𝐱𝑎 = (𝐂𝑎
𝑇𝐂𝑎)

−1𝐂𝑎(𝛈 − 𝐛) 
 
Because (𝐂𝑎

𝑇𝐂𝑎) must be invertible and 𝐱𝑎 has 12 
components, the minimum number of uniaxial 
accelerometers is 𝑛 ≥ 12, which is equivalent to 4 
tri-axial accelerometers.  
 The acceleration state vector requires a few 
additional steps before it can be used in the state 
observer. First, the inertial accelerations 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 

are not equivalent to 𝑢̇, 𝑣̇, 𝑤̇ because they are vector 

(2.14) 

(2.15) 

(2.17) 

(2.16) 

(2.18) 

(2.19) 

(2.20) 



 

 

derivatives taken in two different frames of 
reference.  The relationship between the two is:  
 

𝑢̇ = 𝑎𝑥 + 𝑟𝑣 − 𝑞𝑤 
𝑣̇ = 𝑎𝑦 + 𝑝𝑤 − 𝑟𝑢 

𝑤̇ = 𝑎𝑧 + 𝑞𝑢 − 𝑝𝑣 
 
Second, the Euler rates are not related to the 
acceleration state vector, but can be found from 
angular rate information through the following 
transformation: 
 

[
𝜙̇

𝜃̇
𝜓̇

] =  [
1 sin(𝜙) tan(𝜃) cos (𝜙)tan (𝜃)
0 cos (𝜙) −sin (𝜙)
0 sin (𝜙)sec (𝜃) cos (𝜙)sec (𝜃)

] [
𝑝
𝑞
𝑟
] 

 
 
In order to obtain all of the aircraft state rates of 
change for use in the state observer, it is assumed 
that the aircraft is equipped with gyros to determine 
𝑝, 𝑞, 𝑟 and GPS to determine 𝑢, 𝑣,𝑤.  
 
3. SIMULATION SETUP 

 

This section describes a simulation of lateral 
and longitudinal wind velocity observers that were 
developed in MATLAB and Simulink.  The 
observers were implemented on lateral and 
longitudinal aircraft models of the Ttwistor UAS that 
were buffeted by simulated wind velocities for 30 
seconds using a 0.001 time step.  The control inputs 
were simulated through linear quadratic regulator 
(LQR) feedback control to keep the aircraft as close 
to straight and level as possible.  It was assumed 
that all of the aircraft states and aircraft state rates 
of change (𝐱 and 𝐱̇) were known perfectly, that there 
was no ambient wind (𝐱𝑠 = 0), and that the aircraft 

dynamics were perfectly modeled through a linear 
state space representation. 

The simulation was conducted in two separate 
parts: 

1) The Ttwistor was simulated using the 
dynamics shown in Eqn. 2.1a and buffeted 
by simulated wind.  This produced “true” 
aircraft states, controls, and accelerations 
that were fed into the wind velocity 
observer. 

2) The observer was tested using the 
estimated state dynamics shown in Eqn. 
2.9  

These steps are more clearly depicted in Fig. 3. 
 

   

FIG. 3. Diagram of simulation setup. 

 
3.1 Ttwistor Specifications 
 

 The Ttwistor is a fixed-wing sUAS with twin 
engine propellers on each wing that provide thrust, 
a T-shaped tail with a rudder for yawing motion, and 
elevators and ailerons on the wings for pitch and roll 
(see Fig. 4).  The mass, speed, and geometry of 
this aircraft are provided in Table 3.1. 
 

 

FIG. 4. Ttwistor UAS in flight. (University of Colorado Boulder 

2017) 

 
 

 

TABLE 5. Ttwistor mass and geometric properties. 

 

 This platform was chosen for simulation 
primarily due to the availability of lateral and 
longitudinal state space models.  The aircraft 
stability derivatives, engine parameters, drag 
terms, and moments of inertia were produced by 
Roadman et al. (2012).  These parameters were 
used in Maio et al. (2018) to compute the 
aerodynamic coefficients that make up the 𝐀, 𝐁, 

(2.21) 

(2.22) 



 

 

and 𝐆 matrices used in Eqn. 2.1a. The linear model 
parameters were calculated assuming average 
flight conditions in Boulder, CO using density 
values from the International Standard Atmosphere 
(ISA) model.   
 Recall that the linear model assumes the states 
are perturbations from a trim condition.  The trim 
conditions were obtained by minimizing the 
Ttwistor’s nonlinear aerodynamic force and 
moment equations.  The non-zero trim conditions 
are given in Table 3.2.   
 

 

TABLE 2. Ttwistor trim states and control inputs. 
  
3.2 Simulated Control Inputs 

 
 The control inputs were designed using 
standard LQR feedback control, such that 
 

𝐮 = −𝐊𝐱 
 

where 𝐊 is the optimal matrix that forces aircraft 
states to the trim condition in a very similar manner 
to the Kalman Filter selection of 𝐋.  The feedback 
system was designed in MATLAB using the lqr 

command.  To make the simulation more realistic, 
the surface deflections were limited by upper and 

lower saturation values of ± 45° and the throttle was 
bounded from 0 to 1.  The resulting control inputs 
throughout the simulation are shown in Fig. 5.  

 

 

FIG. 6. Simulated control inputs: elevator deflection, thrust limit, 

aileron deflection, and rudder deflection. 

 
3.3 Simulated Wind Velocities 
  

 The Ttwistor was buffeted by simulated wind 
produced from three different Simulink blocks: the 
continuous Dryden Wind Turbulence, Discrete 
Gust, and Wind Shear blocks.  Fig. 6 shows how 
this was set up.  The turbulence length scale was 
set to 533.4 m and the turbulence intensity was set 
to 0.1944 for an altitude of 1800 m mean sea level 
(MSL) within the Dryden Turbulence Block.  The 
Dryden Turbulence model was also used to define 
the 𝐀𝑔, 𝐁𝑔, and 𝐂𝑔 matrices shown in Eqns. 2.6b 

and 2.6c.  The Discrete Gust block was given a 
magnitude of 1 m/s in all translational body axes 
and the Shear Wind block was given a magnitude 
of 3 m/s coming from 20°  clockwise from north.  
The resulting simulated wind velocities with discrete 
and shear terms are shown in Fig. 7. 
 

 

FIG. 7.  Simulink Diagram for three gust types: Dryden model 

gusts, discrete gusts, and wind shear. 

 

(3.1) 



 

 

 

FIG. 8. Translational and angular simulated gusts in body frame 
coordinates. 

 

3.4 Sensor Model 
 

 Band limited white noise was applied to the 
states and rates of change that were subsequently 
fed into the wind velocity observer. These states 
primarily correspond to GPS, accelerometer, and 
gyro measurements.  The noise power was 
computed using the noise PSD values located on 
the Invensense MPU-6050 data sheet (Invensense 
2018). The data sheet lists a noise PSD of 0.005 

°/𝑠/√𝐻𝑧 for the gyros and 400 𝜇𝑔/𝑠/√𝐻𝑧 for the 

accelerometers.  
 
3.5 Observer Setup 

The lateral and longitudinal wind velocity 
observers were simulated using the dynamic model 

given in Eqn. 2.9. The 𝐀̃ and 𝐁̃ matrices were 
obtained from the aircraft and wind models 
described in the previous sections.  All of the control 
inputs, aircraft states, and aircraft state rates of 
change used in the observer were produced from 
simulating the aircraft in windy conditions. Initial 
conditions for the estimated aircraft states and 
control inputs were chosen arbitrarily in order to 
show convergence to the correct wind velocities.  
The simulation was run both with and without 
feedback from the aircraft state rates of change that 
are associated with distributed accelerometer 
measurement. This was done to show the 
improvements in wind velocity estimation when 
using acceleration terms in the observer.  
 
 
 

3.6 Diagrams of Simulation 
 

 The following diagrams show the simulation of 
the Ttwistor and subsequent inputs to the wind 
velocity observer in more detail:  

     

FIG. 9.  Diagram of Ttwistor simulation.  The aircraft was 

buffeted with three types of wind. Control inputs were simulated 
to stabilize the aircraft. The resulting outputs were fed into the 

wind velocity observer. 

 

 

FIG. 10.  Diagram of the wind velocity observer. Inputs, states, 
and state rates of change were given from the aircraft simulation. 

The resulting outputs are the estimated wind velocities and 
aircraft states. 
 
4. RESULTS 

 
The wind velocity estimates from the observer 

show convergence to the correct wind velocity 
values regardless of incorrect initial conditions both 
with and without acceleration feedback.  However, 
the error from the wind velocity estimates is 
significantly lower when using acceleration terms in 
the observer feedback than without these terms.  
The following plots show the lateral and longitudinal 
wind velocity estimates as compared to the actual 
simulated velocities and the estimated wind 
velocities without acceleration feedback.  
 



 

 

 

FIG. 11. Lateral wind velocity estimates. The wind velocity 
observer with acceleration feedback (blue) is compared to the 

actual states (yellow) and the observer without acceleration 
feedback (red). 

 

 

FIG. 12. Longitudinal wind velocity estimates. The wind velocity 
observer with acceleration feedback (blue) is compared to the 

actual states (yellow) and the observer without acceleration 
feedback (red). 
 
These plots show that the observer produces wind 
velocity estimates that converge to the correct 
values both with and without acceleration feedback.  
With acceleration feedback, the error of the wind 
velocity estimates is significantly reduced.  This is 
further emphasized in the following histogram of 
errors. 
 

 

FIG. 13. Histogram of errors for wind velocity observer with 

(orange) and without (blue) acceleration feedback. 
 
The following table shows the standard deviation of 
the errors for both sets of wind velocity estimates.  
From this, one can see an obvious improvement in 
the observer with the use of acceleration feedback.    
 
 

Standard Deviation 

 With Accels Without Accels 
𝑢𝑔 (m/s) 0.0979 0.2212 

𝑣𝑔 (m/s) 0.0237 0.1204 

𝑤𝑔 (m/s) 0.0179 0.1415 

𝑝𝑔 (rad/s) 0.0062 0.0525 

𝑞𝑔 (rad/s) 0.0074 0.0374 

𝑟𝑔 (rad/s) 0.0060 0.0402 

TABLE 3. Standard deviation of errors for wind velocity observer 

with and without acceleration feedback. 

 
5. CONCLUSION 
 

Standard methods of wind velocity 
measurement are prohibitively expensive in terms 
of size, weight, power, and cost for use on sUAS.  
This paper describes a method of wind velocity 
estimation that does not rely on any airspeed 
measurements, but rather utilizes lightweight and 
cheap aircraft sensors such as GPS and IMUs. The 
addition of translational and angular accelerations 
in the observer feedback via a distributed 
acceleration sensor suite can greatly improve wind 
velocity estimates.  This was shown with simulation 
using a Ttwistor UAS platform that was buffeted by 
simulated wind gusts and wind shear.  The results 
showed a viable method of wind estimation that is 
within 1 m/s for translational wind velocity 



 

 

estimation and within 0.1 rad/s for angular wind 
velocity estimation.     

Future work includes using the wind velocity 
observer with experimental data from flight using a 
fixed-wing UAS equipped with a distributed 
accelerometer sensor suite, GPS, and an IMU. The 
resulting wind velocity estimates will be compared 
to relative wind data from an onboard multi-hole 
probe that is transformed into inertial wind using 
GPS information. The observer will then be 
implemented onboard for real-time wind velocity 
estimates during experimental flight.            
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