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1. INTRODUCTION

Supercooled large drops (SLD) pose a unique
and, in some aircraft, enhanced threat to aviation
safety compared to traditional small drop icing
conditions due to their higher collision frequency,
rougher texture, and ability to accumulate behind
deicing boots (Cober and Isaac, 2012; Politovich
1989). In recent years, the Federal Aviation
Administration (FAA) has imposed new icing
regulations under 14 CFR Appendix O to Part 25
to address hazards associated with SLD icing
conditions, augmenting existing regulations
regarding small drop icing conditions in Appendix
C. Appendix O SLD conditions, defined as drops
of at least 100 um in diameter, are further broken
down by the maximum supercooled liquid drop
diameter (DMax) into freezing drizzle
(100um<DMax<500um; FZDZ) and freezing rain
(DMax>500um; FZRA). These new regulations
and associated environmental categories have
necessitated research on how to provide
operational drop size guidance to the aviation
community.

The availability of more sophisticated Numerical
Weather Prediction (NWP) models along with
improved observational networks facilitate
development of icing weather tools with enhanced
capability for classifying drop size. Specifically, the
High Resolution Rapid Refresh model (HRRR),
running operationally at the National Center for
Environmental Prediction, features the Thompson-
Eidhammer aerosol-aware bulk microphysics
parameterization (Thompson and Eidhammer
2014), which provides forecasts of both mixing
ratio and number concentration for the cloud and
rain hydrometeor categories. Using these
predicted quantities, the DMax is allowed to vary
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under different conditions in the model forecast.
Deriving DMax from the model forecast can be
used to advance operational icing tools, such as
the Current Icing Product (CIP) and Forecast Icing
Product (FIP), to address Appendix O.

This paper describes the approach used to
distinguish small and large drop icing conditions
and further categorize the SLD conditions based
on drop size in support of Appendix O regulations.
The HRRR-based drop size forecasts are
compared to in situ aircraft measurements from
research flights in Idaho to evaluate the capability
of the model to accurately distinguish small drop
icing, freezing drizzle, and freezing rain.

2. DATA AND METHODS

2.1 HIGH RESOLUTION RAPID REFRESH
MODEL (HRRR)

In the operational HRRR, which runs the
Thompson-Eidhammer aerosol-aware bulk
microphysics scheme, the rain drop hydrometeor
category encompasses both drizzle and rain sized
drops, as defined by Appendix O, while the cloud
drop hydrometeor category includes only small
drop (Appendix C) supercooled liquid (Thompson
and Eidhammer, 2014). The size distribution,
N(D), of the rain/drizzle drops is parameterized
with the ratio of total number concentration, Nt,
and the mass mixing ratio, g, using an exponential
probability distribution:

N(D) = Ae~P4
pN\ Y3
A= (L)
q

Where D is the drop diameter and p is the density
of liquid water. Because the exponential
probability distribution is infinite, it is difficult to
determine what the maximum drop size is--any
drop size is possible, though the probability of



observing a drop becomes infinitesimal with its
increasing diameter.

Research presented by Tessendorf et al. (2017)
suggested the 99th percentile of the distribution as
an appropriate estimate of maximum diameter.
This way, one percent of the modeled raindrops
are at least as large as DMax. Figure 1 illustrates
this 99th percentile method with an example size
distribution from the HRRR. The blue curve shows
the modeled size distribution, while the dashed
lines indicate the 50th, 70th, 95th, and 99th
percentiles of the number concentration. The key
size thresholds for regulations (100um and
500um) are also marked as solid gray lines. In this
example, the 99th percentile, and thus the DMax,
is just over 500um, which would classify this case
as freezing rain.

The Inflight Icing (IFI) team at the National
Center for Atmospheric Research (NCAR) has
used this 99th percentile method product to create
an experimental DMax and Appendix C/O
classification product in real time over the
Contiguous United States (CONUS). Figure 2
shows an example of the composite (column max)
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Figure 1: An example raindrop size
distribution from the HRRR (blue) with
various percentiles of the distribution
marked as dashed lines. The critical
100um and 500um DMax thresholds are
also indicated as solid gray lines. In this
case, the 99th percentile, or DMax, is just
above 500um, classifying the distribution
as freezing rain.
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DMax product over the Carolinas during a winter
storm on 10 December 2018 that produced ample
snowfall in Virginia. The warm colors indicate
areas of freezing rain, while cooler colors indicate
freezing drizzle. This product has shown skill in
distinguishing freezing drizzle from freezing rain in
isolated cases (Tessendorf et al., 2017) but this
study will provide a more comprehensive
evaluation of its strengths and weakness by
comparing it to in situ observations.

To limit the amount of data processing required,
but not rely on a single forecast lead time, the 3, 6,
and 12-hour forecasts are considered for this
study. The 3-hour forecast is considered because
it is used in the Current Icing Product (CIP), which
runs operationally in real time providing icing

06 Hour forecast valid at: 12/10/2018 1600 UTC

— -
e N I
.1 z.
A
_ “’833"
: o
. ‘W
' ("-‘JG"#"
ot
- .\ P . 5)'- 1 |
L . '\"fg
- :
;A - e ‘\-_f-ﬂ
' -
- A -
A — 7
[TTTT I [ 1T T T T T T T T T T e
0 150 300 450 600 750 1000 1300 1600 2200 2800 5000

micron

Figure 2: Example of the experimental
DMax product from the 6-hour HRRR
forecast valid at 1600 UTC on 10
December 2018 over the Carolinas. The
maximum diameter (shading) is
represented the 99th percentile of the
model raindrop hydrometeor category, and
the composite (column maximum) is shown
in this image. Areas falling into the
Appendix O freezing rain category are
shown in warm/orange colors, while those
categorized as freezing drizzle are shown
in cool/blue colors.




probability and severity. The 12-hour lead time is
chosen because case studies have previously
shown that longer lead times occasionally resolve
SLD conditions more accurately than shorter lead
times. The 6-hour lead time is also used to provide
a mid-range forecast. Future work may more
formally evaluate the HRRR’s ability to forecast
SLD as a function of lead time, but this study will
consider these three lead times simultaneously.

2.2 IN SITU OBSERVATIONS

In situ observations of hydrometeor sizes are
not routinely collected and are isolated to field
campaigns, usually with cloud imaging probes on
board research aircraft. Observations of
supercooled large drops are even more infrequent
since these conditions are only present in a subset
of the clouds sampled. Fortunately, the recent
Seeded and Natural Orographic Wintertime
clouds: the Idaho Experiment (SNOWIE) which
took place in January to March of 2017 in the
Payette River basin north of Boise, Idaho, included
several cases with SLD and in situ observations of
drop size (Tessendorf et al., 2019).

For this study, particle sizes from the onboard
2D-S imaging probe were compared to the HRRR
DMax product. Because part of the SNOWIE
project was to evaluate the impact of cloud
seeding by silver iodide, only flight legs occurring
in natural clouds (i.e. before seeding was
conducted) were used in study. For these
segments, from a total of eight different flights, the
2D-S images were processed to remove shattered
pieces, particles under 50um which are too small
to reliably classify as liquid or ice, and other
artifacts. The largest particle the 2D-S is capable
of observing is 1260um in diameter, but the vast
majority of liquid particles were well below this
threshold. Since whole particles can appear as
hollow rings when out of focus, these holes were
filled, and then the diameters, areas, and
perimeters of each particle computed. A shape
parameter was then defined as the product of the
diameter and perimeter divided by the area. For a
perfect circle this shape parameter is four, but
anything under 5.65 was considered circular and
therefore liquid for this study. This threshold was
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determined by visually examining particles from
several all-liquid and all-ice cases and the overall
distribution of shape parameters.

Having separated liquid particles from snow and
ice, the observations were grouped into 30-second
windows to roughly match the 3-km grid spacing of
the HRRR at an airspeed of 100m/s. If a 30-
second window (hereafter just “observation”)
included fewer than 100 liquid particles, it was
omitted from analysis, otherwise the 99th
percentile of the observed diameters was used as
the observed DMax. Various other methods were
evaluated for computing the DMax from the
observations, including the diameter of the largest
particle, and diameter of the 10th largest particle.
The latter of these methods is most similar to
methods used in Cober and Isaac (2012) which
was used in the development of Appendix O
regulations. These three methods yielded similar
values and the 99th percentile was chosen to
match the method applied to the HRRR.

The distribution of observed DMax is shown in
Figure 3. In total there were 73 Appendix C small
drop icing observations, 209 freezing drizzle
observations, and 2 freezing rain observations.
The absence of a warm nose in both the model
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Figure 3: The distribution of observed
DMax from the 2D-S after removing
shattered pieces, particles under 50um,
and observations with fewer than 100
total liquid particles. There was a total of
73 Appendix C (small drop) observations,
209 freezing drizzle, and 2 freezing rain.




and nearby observed atmospheric profiles
suggests the SLD was “non-classical” and driven
by collision and coalescence (not shown).

3. RESULTS

Initial analysis revealed high spatial variability
regarding the presence of explicit rain water in the
HRRR. For example, Figure 4 shows a composite
image of where the HRRR had supercooled
rain/drizzle (shading, lighter blues indicate more
rain) for the 12-hour forecast valid at 0400 UTC on
9 January 2017 with the flight path overlaid as a
dark red line. Previous studies have also shown
that point-by-point matching of high-resolution
model output to point observations is not a reliable
evaluation method since models are often slightly
off in the location of features (Rossa et al, 2008).
As such, small neighborhoods of model grid cells
centered around the observations are often used
for comparison. While several neighborhood sizes
were considered, the remainder of this study will
focus on results using a neighborhood of 5 by 5
model cells (+/- 2 from the nearest point giving 15
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Figure 4: Composite (column max)
supercooled rain mixing ratio from the
HRRR (shading, lighter shades of blue
indicate higher mixing ratio). Image shown
is from a 12-hour forecast valid at 0400
UTC on 9 January 2017. The dark red line
indicates the flight path. White space is
where no SLD was predicted, though
almost the entire flight observed SLD in
this case.
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by 15 km box) in the horizontal and 3 vertical
levels (+/- 1 from flight level). This has the added
benefit of providing more data for analysis since
the HRRR DMax cannot be computed unless
there is explicit supercooled rain water. By using
every point in the 5 by 5 by 3 neighborhood, along
with 3 lead times, each observation is matched to
225 different model points. The probability of
detection (POD) for SLD, defined as the percent of
time at least one of those 225 model points
forecasted SLD when it was observed, was
18.2%.

Figure 5 summarizes the HRRR DMax
performance where the colors indicate the number
of observation-HRRR pairs with a given range of
Dmax values. Essentially, the warmer colors
indicate more dense points on a scatter plot.
Observations are plotted once for every matching
HRRR point with SLD in the 5 by 5 by 3
neighborhood, so if all HRRR points had SLD, the
same observation would be plotted 225 times.
One encouraging result is that the model DMax (y-
axis) spans the whole range from Appendix C to
FZRA sizes. This demonstrates that, despite
having a fixed size distribution functional
(exponential) form with an infinite maximum size,
the model microphysics parameterization is
capable of producing the full range of maximum
diameters critical to Appendix O using the 99th
percentile approach to deriving DMax. However,
the accuracy of the predicted DMax when
supercooled rain is predicted by the HRRR
forecast model needs improvement. Though the
range of HRRR DMax values is large, the cluster
of yellow, green, and light blue boxes on the left
hand side of the plot indicates a narrow
distribution of HRRR DMax values centered
around 300um. Compared to observations largely
below 300um, the HRRR DMax has a high root
mean squared error (RMSE) of 235 microns.
Because the model generally overestimates the
DMax (most points are above the black one-to-one
line), there is a low rate of under-categorizing
FZDZ as Appendix C (2.5%), but a high rate of
over-categorizing Appendix C as FZDZ (99%).
These statistics, however, still rely on the model
producing some amount of supercooled rain
water, which was not usually the case (POD of
18.2%).
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Figure 5: DMax values from observations and the HRRR were binned every 25um between
50 and 600um. The colors indicate the number of pairs that fell into a bin (gray indicates
zero). Red lines highlight the critical 100um and 500um size thresholds for FZDZ and
FZRA. Black line represents a perfect match between observations and model.
Observations are counted up to 225 times, once for every matching HRRR grid point that
had SLD (5 by 5 grid points in the horizontal, 3 grid points in the vertical, 3 lead times).

There are several possibilities for why the
model missed so much SLD and had a high error
in the DMax that did exist. These include errors in
the driving dynamics, unrepresentative
background aerosol forcings, and overproduction
of snow/ice which would deplete supercooled
liquid and thus limit SLD. In addition, the model
prescribes an exponential size distribution for the
rain category which may affect the accuracy of the
resulting DMax.

3.1 EVALUATION OF PRESCRIBED
EXPONENTIAL RAIN DROP SIZE
DISTRIBUTION

To quantify the impact of the prescribed
exponential form of the drop size distribution
(DSD), such function was fit to the observed

distribution using the maximum likelihood method.
The DMax (99th percentile) of the resulting
exponential distribution was then extracted and
compared to the observed DMax. This is
illustrated in Figure 6, where the black curve
represents the exponential DSD fitted to the
observed drops sizes, which were then binned and
plotted as blue bars. The inset shows the
observed DMax (red bar) and the DMax from the
fitted curve (red dot) for this example. The
functional form of the distribution is also shown in
the top left where N(D) is the probability
distribution of drop sizes, D is the drop diameter,
and 1 is the parameter optimized to produce the
fitted black curve.

Figure 7 shows how these approximated DMax
values compare to the observed ones. It is
important to remember that no model output is
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Figure 6: Example of an observed drop
size distribution (blue bars) and the
maximum likelihood exponential fit to that
distribution (black curve). Equation in the
top left shows the general form of the
exponential fit where N(D) is the
probability density of a particle having
diameter D, and A is the parameter
adjusted to fit the function to observations.
The insert on the right shows the
observed (red bar) and approximated (red
circle) DMax.
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shown in this figure. The x-axis is the observed
DMax, while the y-axis is the DMax from an
exponential function fitted to those same
observations. The figure does not show model
performance, but rather how well a DMax can be
approximated using an exponential drop size
distribution. This can be conceptualized as the
minimum error the model could achieve with this
prescribed form of the DSD. With a root mean
squared error (RMSE) of 69um, the constraints of
this functional form could account for up to 30% of
the error in HRRR DMax (Figure 5). Itis worth
noting that the fitted exponential functions tend to
overestimate DMax when the observed values are
small, as seen by most of the blue dots being
above the gray one-to-one line when the observed
values are less than 150um. While the errors are
still much smaller than those seen in Figure 5, this
could contribute to the overestimation of DMax
when SLD is present in the model. At larger
observed DMax values there is no obvious bias,
but the errors become much larger (blue dots
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further from the gray line). This may be due to
observed bimodal distributions from collision-
coalescence processes at larger sizes which are
not well approximated by exponential distributions.
While Figure 7 shows all observations, results
were very similar when only points where the
HRRR contained SLD were considered (not
shown). In general, it appears the prescribed
exponential form of the DSD in the HRRR is an
appropriate approximation for observed
distributions and the errors in modeled DMax
largely originate elsewhere.

3.2 POSSIBLE AEROSOL IMPACTS

It is well known that aerosols impact the number
and sizes of cloud drops; as aerosol
concentrations increase, droplets generally
become smaller but more numerous as there are
more particles on which water can condense. As
such, it was hypothesized that the collision and
coalescence of cloud drops into SLD sizes may
have been inhibited in the model by higher than
observed aerosol concentrations. This could
explain the low probability of detection of FZDZ or
FZRA sized drops.
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Figure 7: Exponential functions were fit to observed size distributions (see Figure 6 and
text) and the 99th percentiles of these functions compared back to the observed DMax
values (blue dots). The diagonal black line is the least squares line of best fit between the
observed and approximated DMax values. The gray line shows the one-to-one line which
would represent a perfect exponential fit to the observations. The root mean squared

The SNOWIE campaign lacks in situ aerosol
measurements, but cloud droplet number
concentration from the cloud droplet probe (CDP)
can be compared to the HRRR cloud number
concentrations as a proxy for aerosol content
since smaller, more numerous drops are generally
indicative of higher aerosol concentrations. Figure
8 shows the comparison of these cloud drop
number concentrations from the observations
(blue), and the HRRR (red). Compared to
observations, the model had fewer instances of
very low drop concentration (0-40 drops per cubic
centimeter), and higher rates of concentrations
greater than 60 drops per cubic centimeter. This
supports the hypothesis that part of the
underproduction of SLD in the model could be
from higher than observed background model
aerosol contents.

4. SUMMARY AND CONCLUSIONS

Using in situ drop size measurements and cloud
drop number concentrations in Appendix C and
Appendix O freezing drizzle icing environments
from eight SNOWIE flights, the ability of the High
Resolution Rapid Refresh model (HRRR) to
accurately forecast the maximum supercooled
liquid drop diameter (DMax) was evaluated.
Observed DMax was computed as the 99th
percentile of the drop diameters observed in a 30-
second window from a 2D-S probe. These
observations were compared to the 99th percentile
of the exponential distribution of modeled rain drop
sizes from the Thompson-Eidhammer aerosol-
aware microphysics scheme in the HRRR. Overall
the model had a 18.2% probability of detecting
observed SLD conditions.
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Figure 8: Cloud drop number concentrations (number of drops per cubic centimeter) from
the in situ cloud droplet probe (blue; CDP) and from the HRRR (red). The observed
concentrations were generally lower than modeled.
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The distribution of model DMax values
demonstrates the model is capable of producing
the full range of sizes applicable to icing
regulations--from Appendix C small drop icing
(<100um) to Appendix O freezing drizzle (>100um
and <500um) and freezing rain (>500um). The
ability for the model to produce a DMax that falls
into the freezing drizzle size range is especially
notable. This signifies that the two-moment
microphysics scheme for the rain hydrometeor
category, even with an infinite and fixed functional
form for the size distribution, is capable of
becoming narrow enough such that drizzle
situations are simulated. Thus, the HRRR model
microphysics are capable of distinguishing
freezing drizzle from freezing rain for the purposes
of categorizing Appendix O conditions. However,
this analysis revealed that the model DMax, when
SLD was predicted, was generally larger than
observations, and the model’s ability to produce
SLD in general needs to be improved.

Two factors that could contribute to these errors
in the model were investigated: the prescribed
form of the size distribution and the model aerosol
forcing. Because the model prescribes an
exponential drop size distribution, such function
was fit to observations to assess the
appropriateness of this functional form. The DMax
produced by these fitted exponential distributions
produced a root mean squared error 30% as large
as that from the modeled DMax, showing that
most of the model’s error lies elsewhere. Cloud
drop number concentrations from an in situ cloud
droplet probe and from the model were compared
to see if the model aerosol content could have

been responsible for less SLD in the model.
Indeed, the distribution of modeled cloud drop
concentrations was weighted towards higher
concentrations than observed, which could
contribute to the model’s underproduction of SLD
conditions. Nonetheless, there are still a variety of
other factors that could cause the model's
underproduction of SLD and require further
investigation.

5. FUTURE WORK

There remain many unexplored reasons why
the HRRR model had a low probability of detecting
SLD (18.2%), and why the cases that did produce
SLD had a bias towards larger than observed
DMax values. Future research will explore
additional factors, such as over production of snow
and ice which would deplete supercooled liquid
and thus SLD and has been seen in previous case
studies. An evaluation of the driving atmospheric
dynamics is also needed because the model
microphysics is heavily dependent on the
performance of the larger scale synoptic and
mesoscale conditions. As more is discovered
about the model strengths and weaknesses,
algorithms will be developed to compensate and
provide products tuned to the needs of the aviation
community. Such algorithms will likely incorporate
fuzzy logic similar to the Forecast Icing Product
which runs operationally on the WRF-RAP model.

In addition to further exploration of model
limitations, additional in situ data are required to
expand the types of conditions observed. The
SNOWIE campaign has provided valuable data in



orographically-driven freezing drizzle, but the data
are limited geographically to the Boise, Idaho area
and include very few cases with freezing rain sized
drops. These deficiencies in the available data will
be addressed using observations from the Buffalo
Area Icing and Radar Study Il (BAIRS-II) which
took place near Buffalo, New York from January to
March of 2017, and the In-Cloud Icing and Large-
drop Experiment (ICICLE) planned for January to
March 2019 out of Rockford, lllinois.
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