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1. INTRODUCTION 
 
    Supercooled large drops (SLD) pose a unique 
and, in some aircraft, enhanced threat to aviation 
safety compared to traditional small drop icing 
conditions due to their higher collision frequency, 
rougher texture, and ability to accumulate behind 
deicing boots (Cober and Isaac, 2012; Politovich 
1989). In recent years, the Federal Aviation 
Administration (FAA) has imposed new icing 
regulations under 14 CFR Appendix O to Part 25 
to address hazards associated with SLD icing 
conditions, augmenting existing regulations 
regarding small drop icing conditions in Appendix 
C. Appendix O SLD conditions, defined as drops 
of at least 100 𝜇m in diameter, are further broken 
down by the maximum supercooled liquid drop 
diameter (DMax) into freezing drizzle 
(100𝜇m<DMax<500𝜇m; FZDZ) and freezing rain 
(DMax>500𝜇m; FZRA). These new regulations 
and associated environmental categories have 
necessitated research on how to provide 
operational drop size guidance to the aviation 
community.  
    The availability of more sophisticated Numerical 
Weather Prediction (NWP) models along with 
improved observational networks facilitate 
development of icing weather tools with enhanced 
capability for classifying drop size. Specifically, the 
High Resolution Rapid Refresh model (HRRR), 
running operationally at the National Center for 
Environmental Prediction, features the Thompson-
Eidhammer aerosol-aware bulk microphysics 
parameterization (Thompson and Eidhammer 
2014), which provides forecasts of both mixing 
ratio and number concentration for the cloud and 
rain hydrometeor categories. Using these 
predicted quantities, the DMax is allowed to vary 

under different conditions in the model forecast. 
Deriving DMax from the model forecast can be 
used to advance operational icing tools, such as 
the Current Icing Product (CIP) and Forecast Icing 
Product (FIP), to address Appendix O.  
    This paper describes the approach used to 
distinguish small and large drop icing conditions 
and further categorize the SLD conditions based 
on drop size in support of Appendix O regulations. 
The HRRR-based drop size forecasts are 
compared to in situ aircraft measurements from 
research flights in Idaho to evaluate the capability 
of the model to accurately distinguish small drop 
icing, freezing drizzle, and freezing rain. 
 
2. DATA AND METHODS 
 
2.1 HIGH RESOLUTION RAPID REFRESH 
MODEL (HRRR) 
 
    In the operational HRRR, which runs the 
Thompson-Eidhammer aerosol-aware bulk 
microphysics scheme, the rain drop hydrometeor 
category encompasses both drizzle and rain sized 
drops, as defined by Appendix O, while the cloud 
drop hydrometeor category includes only small 
drop (Appendix C) supercooled liquid (Thompson 
and Eidhammer, 2014). The size distribution, 
N(D), of the rain/drizzle drops is parameterized 
with the ratio of total number concentration, Nt, 
and the mass mixing ratio, q, using an exponential 
probability distribution: 

𝑁(𝐷) = 𝜆𝑒)*+ 

𝜆 = 	 -
𝜋𝜌𝑁0
𝑞
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Where D is the drop diameter and ρ is the density 
of liquid water. Because the exponential 
probability distribution is infinite, it is difficult to 
determine what the maximum drop size is--any 
drop size is possible, though the probability of 
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observing a drop becomes infinitesimal with its 
increasing diameter.  
    Research presented by Tessendorf et al. (2017) 
suggested the 99th percentile of the distribution as 
an appropriate estimate of maximum diameter. 
This way, one percent of the modeled raindrops 
are at least as large as DMax. Figure 1 illustrates 
this 99th percentile method with an example size 
distribution from the HRRR. The blue curve shows 
the modeled size distribution, while the dashed 
lines indicate the 50th, 70th, 95th, and 99th 
percentiles of the number concentration. The key 
size thresholds for regulations (100𝜇m and 
500𝜇m) are also marked as solid gray lines. In this 
example, the 99th percentile, and thus the DMax, 
is just over 500𝜇m, which would classify this case 
as freezing rain.   
    The Inflight Icing (IFI) team at the National 
Center for Atmospheric Research (NCAR) has 
used this 99th percentile method product to create 
an experimental DMax and Appendix C/O 
classification product in real time over the 
Contiguous United States (CONUS). Figure 2 
shows an example of the composite (column max) 

DMax product over the Carolinas during a winter 
storm on 10 December 2018 that produced ample 
snowfall in Virginia. The warm colors indicate 
areas of freezing rain, while cooler colors indicate 
freezing drizzle. This product has shown skill in 
distinguishing freezing drizzle from freezing rain in 
isolated cases (Tessendorf et al., 2017) but this 
study will provide a more comprehensive 
evaluation of its strengths and weakness by 
comparing it to in situ observations.  
    To limit the amount of data processing required, 
but not rely on a single forecast lead time, the 3, 6, 
and 12-hour forecasts are considered for this 
study. The 3-hour forecast is considered because 
it is used in the Current Icing Product (CIP), which 
runs operationally in real time providing icing 

 
Figure 1: An example raindrop size 
distribution from the HRRR (blue) with 
various percentiles of the distribution 
marked as dashed lines. The critical 
100𝜇m and 500𝜇m DMax thresholds are 
also indicated as solid gray lines. In this 
case, the 99th percentile, or DMax, is just 
above 500𝜇m, classifying the distribution 
as freezing rain. 

 
Figure 2: Example of the experimental 
DMax product from the 6-hour HRRR 
forecast valid at 1600 UTC on 10 
December 2018 over the Carolinas. The 
maximum diameter (shading) is 
represented the 99th percentile of the 
model raindrop hydrometeor category, and 
the composite (column maximum) is shown 
in this image. Areas falling into the 
Appendix O freezing rain category are 
shown in warm/orange colors, while those 
categorized as freezing drizzle are shown 
in cool/blue colors.  
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probability and severity. The 12-hour lead time is 
chosen because case studies have previously 
shown that longer lead times occasionally resolve 
SLD conditions more accurately than shorter lead 
times. The 6-hour lead time is also used to provide 
a mid-range forecast. Future work may more 
formally evaluate the HRRR’s ability to forecast 
SLD as a function of lead time, but this study will 
consider these three lead times simultaneously. 
 
2.2 IN SITU OBSERVATIONS 
 
    In situ observations of hydrometeor sizes are 
not routinely collected and are isolated to field 
campaigns, usually with cloud imaging probes on 
board research aircraft. Observations of 
supercooled large drops are even more infrequent 
since these conditions are only present in a subset 
of the clouds sampled. Fortunately, the recent 
Seeded and Natural Orographic Wintertime 
clouds: the Idaho Experiment (SNOWIE) which 
took place in January to March of 2017 in the 
Payette River basin north of Boise, Idaho, included 
several cases with SLD and in situ observations of 
drop size (Tessendorf et al., 2019).  
    For this study, particle sizes from the onboard 
2D-S imaging probe were compared to the HRRR 
DMax product. Because part of the SNOWIE 
project was to evaluate the impact of cloud 
seeding by silver iodide, only flight legs occurring 
in natural clouds (i.e. before seeding was 
conducted) were used in study. For these 
segments, from a total of eight different flights, the 
2D-S images were processed to remove shattered 
pieces, particles under 50𝜇m which are too small 
to reliably classify as liquid or ice, and other 
artifacts. The largest particle the 2D-S is capable 
of observing is 1260𝜇m in diameter, but the vast 
majority of liquid particles were well below this 
threshold. Since whole particles can appear as 
hollow rings when out of focus, these holes were 
filled, and then the diameters, areas, and 
perimeters of each particle computed. A shape 
parameter was then defined as the product of the 
diameter and perimeter divided by the area. For a 
perfect circle this shape parameter is four, but 
anything under 5.65 was considered circular and 
therefore liquid for this study. This threshold was 

determined by visually examining particles from 
several all-liquid and all-ice cases and the overall 
distribution of shape parameters.  
   Having separated liquid particles from snow and 
ice, the observations were grouped into 30-second 
windows to roughly match the 3-km grid spacing of 
the HRRR at an airspeed of 100m/s. If a 30-
second window (hereafter just “observation”) 
included fewer than 100 liquid particles, it was 
omitted from analysis, otherwise the 99th 
percentile of the observed diameters was used as 
the observed DMax. Various other methods were 
evaluated for computing the DMax from the 
observations, including the diameter of the largest 
particle, and diameter of the 10th largest particle. 
The latter of these methods is most similar to 
methods used in Cober and Isaac (2012) which 
was used in the development of Appendix O 
regulations. These three methods yielded similar 
values and the 99th percentile was chosen to 
match the method applied to the HRRR. 
    The distribution of observed DMax is shown in 
Figure 3. In total there were 73 Appendix C small 
drop icing observations, 209 freezing drizzle 
observations, and 2 freezing rain observations. 
The absence of a warm nose in both the model 

 
Figure 3: The distribution of observed 
DMax from the 2D-S after removing 
shattered pieces, particles under 50𝜇m, 
and observations with fewer than 100 
total liquid particles. There was a total of 
73 Appendix C (small drop) observations, 
209 freezing drizzle, and 2 freezing rain.  
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and nearby observed atmospheric profiles 
suggests the SLD was “non-classical” and driven 
by collision and coalescence (not shown).  
 
3. RESULTS 
 
    Initial analysis revealed high spatial variability 
regarding the presence of explicit rain water in the 
HRRR. For example, Figure 4 shows a composite 
image of where the HRRR had supercooled 
rain/drizzle (shading, lighter blues indicate more 
rain) for the 12-hour forecast valid at 0400 UTC on 
9 January 2017 with the flight path overlaid as a 
dark red line. Previous studies have also shown 
that point-by-point matching of high-resolution 
model output to point observations is not a reliable 
evaluation method since models are often slightly 
off in the location of features (Rossa et al, 2008). 
As such, small neighborhoods of model grid cells 
centered around the observations are often used 
for comparison. While several neighborhood sizes 
were considered, the remainder of this study will 
focus on results using a neighborhood of 5 by 5 
model cells (+/- 2 from the nearest point giving 15 

by 15 km box) in the horizontal and 3 vertical 
levels (+/- 1 from flight level). This has the added 
benefit of providing more data for analysis since 
the HRRR DMax cannot be computed unless 
there is explicit supercooled rain water. By using 
every point in the 5 by 5 by 3 neighborhood, along 
with 3 lead times, each observation is matched to 
225 different model points. The probability of 
detection (POD) for SLD, defined as the percent of 
time at least one of those 225 model points 
forecasted SLD when it was observed, was 
18.2%.  
    Figure 5 summarizes the HRRR DMax 
performance where the colors indicate the number 
of observation-HRRR pairs with a given range of 
Dmax values. Essentially, the warmer colors 
indicate more dense points on a scatter plot. 
Observations are plotted once for every matching 
HRRR point with SLD in the 5 by 5 by 3 
neighborhood, so if all HRRR points had SLD, the 
same observation would be plotted 225 times. 
One encouraging result is that the model DMax (y-
axis) spans the whole range from Appendix C to 
FZRA sizes.  This demonstrates that, despite 
having a fixed size distribution functional 
(exponential) form with an infinite maximum size, 
the model microphysics parameterization is 
capable of producing the full range of maximum 
diameters critical to Appendix O using the 99th 
percentile approach to deriving DMax. However, 
the accuracy of the predicted DMax when 
supercooled rain is predicted by the HRRR 
forecast model needs improvement. Though the 
range of HRRR DMax values is large, the cluster 
of yellow, green, and light blue boxes on the left 
hand side of the plot indicates a narrow 
distribution of HRRR DMax values centered 
around 300𝜇m. Compared to observations largely 
below 300𝜇m, the HRRR DMax has a high root 
mean squared error (RMSE) of 235 microns. 
Because the model generally overestimates the 
DMax (most points are above the black one-to-one 
line), there is a low rate of under-categorizing 
FZDZ as Appendix C (2.5%), but a high rate of 
over-categorizing Appendix C as FZDZ (99%). 
These statistics, however, still rely on the model 
producing some amount of supercooled rain 
water, which was not usually the case (POD of 
18.2%). 

 
Figure 4: Composite (column max) 
supercooled rain mixing ratio from the 
HRRR (shading, lighter shades of blue 
indicate higher mixing ratio). Image shown 
is from a 12-hour forecast valid at 0400 
UTC on 9 January 2017. The dark red line 
indicates the flight path. White space is 
where no SLD was predicted, though 
almost the entire flight observed SLD in 
this case. 
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    There are several possibilities for why the 
model missed so much SLD and had a high error 
in the DMax that did exist. These include errors in 
the driving dynamics, unrepresentative 
background aerosol forcings, and overproduction 
of snow/ice which would deplete supercooled 
liquid and thus limit SLD. In addition, the model 
prescribes an exponential size distribution for the 
rain category which may affect the accuracy of the 
resulting DMax.  
 
3.1 EVALUATION OF PRESCRIBED 
EXPONENTIAL RAIN DROP SIZE 
DISTRIBUTION 
 
    To quantify the impact of the prescribed 
exponential form of the drop size distribution 
(DSD), such function was fit to the observed 

distribution using the maximum likelihood method. 
The DMax (99th percentile) of the resulting 
exponential distribution was then extracted and 
compared to the observed DMax. This is 
illustrated in Figure 6, where the black curve 
represents the exponential DSD fitted to the 
observed drops sizes, which were then binned and 
plotted as blue bars. The inset shows the 
observed DMax (red bar) and the DMax from the 
fitted curve (red dot) for this example. The 
functional form of the distribution is also shown in 
the top left where N(D) is the probability 
distribution of drop sizes, D is the drop diameter, 
and 𝜆 is the parameter optimized to produce the 
fitted black curve.  
    Figure 7 shows how these approximated DMax 
values compare to the observed ones. It is 
important to remember that no model output is 

 
Figure 5: DMax values from observations and the HRRR were binned every 25𝜇m between 
50 and 600𝜇m. The colors indicate the number of pairs that fell into a bin (gray indicates 
zero). Red lines highlight the critical 100𝜇m and 500𝜇m size thresholds for FZDZ and 
FZRA. Black line represents a perfect match between observations and model. 
Observations are counted up to 225 times, once for every matching HRRR grid point that 
had SLD (5 by 5 grid points in the horizontal, 3 grid points in the vertical, 3 lead times). 
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shown in this figure. The x-axis is the observed 
DMax, while the y-axis is the DMax from an 
exponential function fitted to those same 
observations. The figure does not show model 
performance, but rather how well a DMax can be 
approximated using an exponential drop size 
distribution. This can be conceptualized as the 
minimum error the model could achieve with this 
prescribed form of the DSD. With a root mean 
squared error (RMSE) of 69𝜇m, the constraints of 
this functional form could account for up to 30% of 
the error in HRRR DMax (Figure 5).  It is worth 
noting that the fitted exponential functions tend to 
overestimate DMax when the observed values are 
small, as seen by most of the blue dots being 
above the gray one-to-one line when the observed 
values are less than 150𝜇m. While the errors are 
still much smaller than those seen in Figure 5, this 
could contribute to the overestimation of DMax 
when SLD is present in the model. At larger 
observed DMax values there is no obvious bias, 
but the errors become much larger (blue dots 

further from the gray line). This may be due to 
observed bimodal distributions from collision-
coalescence processes at larger sizes which are 
not well approximated by exponential distributions. 
While Figure 7 shows all observations, results 
were very similar when only points where the 
HRRR contained SLD were considered (not 
shown). In general, it appears the prescribed 
exponential form of the DSD in the HRRR is an 
appropriate approximation for observed 
distributions and the errors in modeled DMax 
largely originate elsewhere. 
 
3.2 POSSIBLE AEROSOL IMPACTS 
 
It is well known that aerosols impact the number 
and sizes of cloud drops; as aerosol 
concentrations increase, droplets generally 
become smaller but more numerous as there are 
more particles on which water can condense. As 
such, it was hypothesized that the collision and 
coalescence of cloud drops into SLD sizes may 
have been inhibited in the model by higher than 
observed aerosol concentrations. This could 
explain the low probability of detection of FZDZ or 
FZRA sized drops.  
 

 
Figure 6: Example of an observed drop 
size distribution (blue bars) and the 
maximum likelihood exponential fit to that 
distribution (black curve). Equation in the 
top left shows the general form of the 
exponential fit where N(D) is the 
probability density of a particle having 
diameter D, and 𝜆 is the parameter 
adjusted to fit the function to observations. 
The insert on the right shows the 
observed (red bar) and approximated (red 
circle) DMax.  
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The SNOWIE campaign lacks in situ aerosol 
measurements, but cloud droplet number 
concentration from the cloud droplet probe (CDP) 
can be compared to the HRRR cloud number 
concentrations as a proxy for aerosol content 
since smaller, more numerous drops are generally 
indicative of higher aerosol concentrations. Figure 
8 shows the comparison of these cloud drop 
number concentrations from the observations 
(blue), and the HRRR (red). Compared to 
observations, the model had fewer instances of 
very low drop concentration (0-40 drops per cubic 
centimeter), and higher rates of concentrations 
greater than 60 drops per cubic centimeter. This 
supports the hypothesis that part of the 
underproduction of SLD in the model could be 
from higher than observed background model 
aerosol contents.  
 
 

4. SUMMARY AND CONCLUSIONS 
 
    Using in situ drop size measurements and cloud 
drop number concentrations in Appendix C and 
Appendix O freezing drizzle icing environments 
from eight SNOWIE flights, the ability of the High 
Resolution Rapid Refresh model (HRRR) to 
accurately forecast the maximum supercooled 
liquid drop diameter (DMax) was evaluated. 
Observed DMax was computed as the 99th 
percentile of the drop diameters observed in a 30-
second window from a 2D-S probe. These 
observations were compared to the 99th percentile 
of the exponential distribution of modeled rain drop 
sizes from the Thompson-Eidhammer aerosol-
aware microphysics scheme in the HRRR. Overall 
the model had a 18.2% probability of detecting 
observed SLD conditions.  
 

 
Figure 7: Exponential functions were fit to observed size distributions (see Figure 6 and 
text) and the 99th percentiles of these functions compared back to the observed DMax 
values (blue dots). The diagonal black line is the least squares line of best fit between the 
observed and approximated DMax values. The gray line shows the one-to-one line which 
would represent a perfect exponential fit to the observations. The root mean squared 
error (RMSE) was 69um. 
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    The distribution of model DMax values 
demonstrates the model is capable of producing 
the full range of sizes applicable to icing 
regulations--from Appendix C small drop icing 
(<100𝜇m) to Appendix O freezing drizzle (>100𝜇m 
and <500𝜇m) and freezing rain (>500𝜇m). The 
ability for the model to produce a DMax that falls 
into the freezing drizzle size range is especially 
notable. This signifies that the two-moment 
microphysics scheme for the rain hydrometeor 
category, even with an infinite and fixed functional 
form for the size distribution, is capable of 
becoming narrow enough such that drizzle 
situations are simulated.  Thus, the HRRR model 
microphysics are capable of distinguishing 
freezing drizzle from freezing rain for the purposes 
of categorizing Appendix O conditions.  However, 
this analysis revealed that the model DMax, when 
SLD was predicted, was generally larger than 
observations, and the model’s ability to produce 
SLD in general needs to be improved. 
    Two factors that could contribute to these errors 
in the model were investigated: the prescribed 
form of the size distribution and the model aerosol 
forcing. Because the model prescribes an 
exponential drop size distribution, such function 
was fit to observations to assess the 
appropriateness of this functional form. The DMax 
produced by these fitted exponential distributions 
produced a root mean squared error 30% as large 
as that from the modeled DMax, showing that 
most of the model’s error lies elsewhere. Cloud 
drop number concentrations from an in situ cloud 
droplet probe and from the model were compared 
to see if the model aerosol content could have 

been responsible for less SLD in the model. 
Indeed, the distribution of modeled cloud drop 
concentrations was weighted towards higher 
concentrations than observed, which could 
contribute to the model’s underproduction of SLD 
conditions. Nonetheless, there are still a variety of 
other factors that could cause the model’s 
underproduction of SLD and require further 
investigation.  
 
5. FUTURE WORK 
 
    There remain many unexplored reasons why 
the HRRR model had a low probability of detecting 
SLD (18.2%), and why the cases that did produce 
SLD had a bias towards larger than observed 
DMax values. Future research will explore 
additional factors, such as over production of snow 
and ice which would deplete supercooled liquid 
and thus SLD and has been seen in previous case 
studies. An evaluation of the driving atmospheric 
dynamics is also needed because the model 
microphysics is heavily dependent on the 
performance of the larger scale synoptic and 
mesoscale conditions. As more is discovered 
about the model strengths and weaknesses, 
algorithms will be developed to compensate and 
provide products tuned to the needs of the aviation 
community. Such algorithms will likely incorporate 
fuzzy logic similar to the Forecast Icing Product 
which runs operationally on the WRF-RAP model.  
    In addition to further exploration of model 
limitations, additional in situ data are required to 
expand the types of conditions observed. The 
SNOWIE campaign has provided valuable data in 

 
Figure 8: Cloud drop number concentrations (number of drops per cubic centimeter) from 
the in situ cloud droplet probe (blue; CDP) and from the HRRR (red). The observed 
concentrations were generally lower than modeled. 
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orographically-driven freezing drizzle, but the data 
are limited geographically to the Boise, Idaho area 
and include very few cases with freezing rain sized 
drops. These deficiencies in the available data will 
be addressed using observations from the Buffalo 
Area Icing and Radar Study II (BAIRS-II) which 
took place near Buffalo, New York from January to 
March of 2017, and the In-Cloud Icing and Large-
drop Experiment (ICICLE) planned for January to 
March 2019 out of Rockford, Illinois. 
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