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Above-Anvil Cirrus Plumes
• An above-anvil cirrus plume (AACP) is a sheet of cirrus cloud sometimes found streaming downwind

above an overshooting thunderstorm top. AACPs are typically warmer than the anvil cloud below.

• Bedka et al (2018) found that storms with AACPs generated 14 times the number of severe weather reports
per storm compared to non-AACP storms, with 73% of significant severe weather reports produced by
AACP storms, and that AACPs appeared, on average, 31 min in advance of severe weather, providing a
possible aid for forecasters.

• Fujita (1982) referred to these lower stratospheric clouds as “jumping cirrus”, hypothesizing that their
relative warmth was due to their location inside stratosphere; Homeyer et al (2017) cite gravity wave
breaking as main AACP formation mechanism.
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• Using the CM1 model, we simulate an AACP-producing thunderstorm at very high resolu-
tion, and vary upper level environmental wind speed to explore AACP dynamics

Methods
• George Bryan’s CM1 model, release 16
• ∆x = ∆y = ∆z = 50 m, 3.5 billion gridpoints
• Model domain: 122 × 120 × 30 km

• Morrison microphysics, TKE closure
• simUstr: AACP-producing environment of

Homeyer et al (2017)
• simUwk: No-AACP environment of Homeyer et

al (2017)
• simU0.5: Scale simUstr wind speed above 11 km

by 50%
• Also four intermediate speed simulations

Homeyer et al. 2017
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Strong vs. weak upper winds
Here we compare water vapor mixing ratio (q′v) shaded by vertical wind speed (blue: downdraft; red: updraft)
between simUstr and simU0.5. View is looking towards the northwest at t = 4280 s.
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Hydraulic jumps in the atmosphere are typically associated with topography, when subcritical flow becomes
supercritical; Supercritical flow becomes unstable, gravity waves break

Jump vs. no jump simulations
Jump results in AACP with relatively smooth inflow
and little upstream gravity wave propagation
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No jump results in no AACP with gravity waves and
turbulent mixing everywhere - gravity waves are able
to propagate upstream due to weaker upper winds
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Conceptual model and preliminary conclusions
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• We get qualitatively the same AACP as Homeyer et al (2017) at 20x the resolution
• Subsidence is almost certainly the cause of the Close-In Warm Area leeside of the overshooting top
• The “topographical Froude number” U/Nhm is less than 1, but this doesn’t preclude a jump
• The Above-Anvil Cirrus Plume appears to be dynamically very simple - linear theory works
• Breaking gravity waves on the lee side of the cloud mountain create a stagnant critical layer
• The critical layer reflects the upward propagating wave energy downward, creating a trapped lee wave
• The flow becomes supercritical on the leeside and is arrested by a hydraulic jump which then moistens

the critical layer; this is the (usually warm) AACP above sinking, adiabatically warming strat/trop air
• Conclusion: A moist, permeable evolving “cloud mountain” (thunderstorm overshooting
top) induces a downslope windstorm and hydraulic jump
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