o Hydraulic Jump Dynamicsin an Above-Anvil Cirrus Plumein a 50-m Resolution Simulated Supercell
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Above-Anvil Cirrus Plumes

e An above-anvil cirrus plume (AACP) is a sheet of cirrus cloud sometimes found streaming downwind
above an overshooting thunderstorm top. AACPs are typically warmer than the anvil cloud below.

e Bedka et al (2018) found that storms with AACPs generated 14 times the number of severe weather reports
per storm compared to non-AACP storms, with 73% of significant severe weather reports produced by
AACP storms, and that AACPs appeared, on average, 31 min in advance of severe weather, providing a
possible aid for forecasters.

e Fujita (1982) referred to these lower stratospheric clouds as “jumping cirrus”, hypothesizing that their
relative warmth was due to their location inside stratosphere; Homeyer et al (2017) cite gravity wave
breaking as main AACP formation mechanism.
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e Using the CM1 model, we simulate an AACP-producing thunderstorm at very high resolu-
tion, and vary upper level environmental wind speed to explore AACP dynamics

Methods

George Bryan’s CM1 model, release 16

Axr = Ay = Az = 50m, 3.5 billion gridpoints
Model domain: 122 x 120 x 30 km

Morrison microphysics, TKE closure

Jump vs. no jump simulations

Jump results in AACP with relatively smooth inflow
and little upstream gravity wave propagation

simUg-: AACP-producing environment of
Homeyer et al (2017)

o simU,: No-AACP environment of Homeyer et
al (2017)

e simUj 5: Scale simUyg;, wind speed above 11 km
by 50%
e Also four intermediate speed simulations

Homeyer et al. 2017
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No jump results in no AACP with gravity waves and
turbulent mixing everywhere - gravity waves are able
to propagate upstream due to weaker upper winds
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Strong vs. weak upper winds

Here we compare water vapor mixing ratio (¢, ) shaded by vertical wind speed (blue: downdraft; red: updraft)
between simUg;, and simUg 5. View is looking towards the northwest at ¢t = 4280 s.
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Hydraulic jumps in the atmosphere are typically associated with topography, when subcritical flow becomes
supercritical; Supercritical flow becomes unstable, gravity waves break
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Jumping trajectories
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Conceptual model and preliminary conclusions

encounters cloud mountain —
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We get qualitatively the same AACP as Homeyer et al (2017) at 20x the resolution
Subsidence is almost certainly the cause of the Close-In Warm Area leeside of the overshooting top

n

I'he “topographical Froude number” U/N h,, is less than 1, but this doesn’t preclude a jump

n

I'ne Above-Anvil Cirrus Plume appears to be dynamically very simple - linear theory works

Breaking gravity waves on the lee side of the cloud mountain create a stagnant critical layer

e

I'he critical layer reflects the upward propagating wave energy downward, creating a trapped lee wave

e

I'he flow becomes supercritical on the leeside and is arrested by a hydraulic jump which then moistens
the critical layer; this is the (usually warm) AACP above sinking, adiabatically warming strat/trop air

e Conclusion: A moist, permeable evolving ‘“cloud mountain” (thunderstorm overshooting
top) induces a downslope windstorm and hydraulic jump
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