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Data Preparation:

Imagery

• IR and VIS imagery only

• IR, VIS, and ENTLN lightning flash extent density

Preprocessing

• Automated storm tracking of 40 dBZ storm cells in NEXRAD

GridRad data [3, 5]

• IR data normalization

• VIS contrast limited adaptive histogram equalization (CLAHE)

preprocessing

• ENTLN lightning flash extent density normalization

Time series and Relational Data

• Human labeling 2 classes (AACP and non AACP storm cells)

• Solar Zenith Angle (SZA) < 82 for reliable VIS data

Model:

• U-net

• U-nets are deep convolutional neural networks that take a raw

image as input and produce a segmentation map as an output.

U-nets are especially effective at detection of highly nuanced

spatial features within an image. This model has been shown to

achieve great results despite a small training set. [4]
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Introduction and Objective

The above anvil cirrus plume (AACP) is a cloud phenomenon that

is generated by an intense tropopause-penetrating updraft which

injects cirrus clouds into the stratosphere up to several

kilometers above the primary storm anvil outflow layer. Storms

that have such intense updrafts are often supercells which

generate severe weather such as tornadoes, high winds, and

hail. In fact, an AACP is also the strongest indicator of a severe

storm documented to date in visible and infrared (IR) imagery [2].

In addition, AACPs moisten the stratosphere perhaps much more

so than storms without AACPs which has an impact on the

Earth’s radiative balance [1].

AACPs typically appear anomalously warm and uniquely

textured in satellite imagery. Though an AACP can be identified

by the human eye, no automated AACP detection methods

currently exist. Lack of detection inhibits understanding of

where and how often AACPs occur and how these storms

influence stratospheric air composition. Previous work involved

synthesis of multiple remote sensing and severe weather

report/warning data sources to identify AACPs in Geostationary

Operational Environmental Satellite system (GOES) imagery and

better understand their weather impacts [2]. This current study

demonstrates a proof-of-concept automated AACP identification

method based on the application of a deep learning

segmentation model known as a U-net. This study documents

the development of a U-net model capable of identifying

emergent AACPs using only satellite IR and visible reflected

sunlight imagery. The performance of a U-net is quantitatively

benchmarked with human AACP identifications and qualitatively

assessed through animations of detections generated from

GOES-16 1-minute temporal resolution imagery.
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Conclusion

Quantitative:

• The average IoU over all 6 folds was 0.33126 for the best

performing model. The best performing model was the U-Net with

IR and VIS data input for predicting updrafts and plumes. Ideally,

we would like to see IoU reach 0.50 for future work.

• Fully convolutional network and long short-term memory (FCN-

LSTM) network for time series. [6]

• Re-training model to discriminate overshooting storms with AACPs 

from overshooting storms without AACPs

• Tune probability thresholding

• Metamodeling with multiple different models using different inputs, 

IR alone, VIS+IR, VIS+IR+Lightning, and various combinations

• Exploring the capabilities of the Google Cloud Platform (GCP) 

AutoML Video Intelligence
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Fig 1. (TOP) (left) GOES-16 merged visible and IR imagery on 16 May 2017,

overlaid with AACP (magenta circles) and non-AACP (blue circles) producing

storm cells identified using GridRad 40 dBZ echo top heights. GridRad echo

tops reaching a 13 km altitude and above the tropopause are also shown

(white contours). (right) A map of AACP (black) and non-AACP (white) cell

tracks throughout the duration of the 16-17 May 2017 severe storm outbreak,

overlaid with severe weather reports, showing that severe weather is often

concentrated along AACP tracks. [2]

(BOTTOM) Examples of AACP producing storms over the U.S. on three

randomly selected days. White arrows on the GOES images point to AACPs

Qualitative:

IoU is a common metric used for the evaluation of semantic

segmentation models. This metric alone does not convey an

accurate picture of the performance of this model. Labeling the

precise onset, cessation, and physical boundaries of fluid

phenomena such as AACPs can be highly nuanced and somewhat

debatable even among trained experts. Therefore, a qualitative

assessment approach was also utilized in this study in order to

determine the model’s real-world utility.

Fig 4: From left to right: Input image, hand labeled mask, model

prediction. Rectangular markings represent non-AACP storms while

circular markings represent AACPs. IoU = 0.225.

Table 1: Validation IoU results of the best performing model for 

each day of the dataset using 6 fold cross validation.

Fig 2. Diagram of the neural network used (U-Net). This model

consists of a series of convolutional layers followed by max pooling

operations which downsample the original image’s dimensions.

These layers are followed by upsampling layers with concatenation

skip connections connecting the previous corresponding

downsampling layers. The model eventually upsamples back up to

the original image dimensions to predict probability of AACP

occurrence on a pixel by pixel basis.

The challenge with IoU in capturing the true performance of this

model is evident when comparing the middle image and the right

image in figure 4. The intersection over union is diminished when

comparing the area of any one of the 4 green hand labeled regions

with the entire prediction mask area in red. However, the model’s

prediction appears to be accurate. It consistently identities plumes

ejecting from active AACP updrafts. The predicted AACP areas

originate from the updraft and predict a plume downrange of the

updraft. It is only in the size of the predicted plume regions that the

model is penalized by the IoU metric.

Above anvil cirrus plumes (AACP) often precede severe weather

events such as tornadoes and severe hail. Automated detection of

AACPs using satellite imagery alone would aid in the early detection

of such events even in regions of the world where weather radar

coverage is lacking. An automated detection mechanism would also

improve understanding of the climatology of AACP storms and their

impact on stratospheric composition. Using visible, IR, and lightning

satellite imagery as input into a U-Net deep convolutional neural

network with radar-derived storm cell tracks and human AACP

identifications as training output, we were able to achieve promising

automated detection of AACPs.
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Fig 3. Sample model

output. Ground truth

labels (circles for

AACP storms and

boxes for non AACP

storms) overlaid on

top of prediction

output and VIS

imagery. The region

predicted by the

model to enclose an

AACP is indicated by

a reddish hue.
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Analysis:

Quantitative

• Benchmarked against human labeling with 6 fold cross validation

• Metrics: IoU

• The primary metric used for quantitative evaluation was

Intersection over Union (IoU) with optimal probability threshold

tuning.

Qualitative

• Visual assessment of performance on static imagery and

animations to confirm colocalization of AACP labels generated

using the models with that of human labeling in addition to

assessing the prevalence of false positives and false negatives.

Day 2017087 2017095 2017136 2017138 2017179 2017180 Average

IoU 0.28538 0.40495 0.37995 0.32163 0.26869 0.32694 0.33126


