Estimating the Value of Weather Radars in Reducing Flash Flood Casualties

John Cho and Jim Kurdzo

15 January 2020

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

This material is based upon work supported by the National Oceanic and Atmospheric Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration.

© 2020 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

JAMC = Journal of Applied Meteorology and Climatology

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Goal: Quantify the impact of radar network configurations in reducing flash flood casualties

Motivation

Flash floods (this talk)

What's next after NEXRAD?

Targeted gap-filling sites?

– Polarimetric phased array radar?

- Continued incremental upgrades?

Denser network of smaller radars?

- Top 3 weather-related casualty sources in U.S.

 - Excessive heat (no direct weather radar impact)

Tornadoes (Cho and Kurdzo, 2019: JAMC, 58, 971-987)

Benefit estimates are needed to support decision process

- Build business case through cost/benefit analyses

Outline

- Motivation
- ⇒ Model development
 - Basic concept
 - Coordinate transformation: Flood location source basin
 - Radar coverage vs. flash flood warning performance
 - Flash flood warning performance vs. casualty rate
 - Model Results
 - Summary

- Poor radar coverage is a significant source of QPE error
- Hypothesize:
 - Flash flood warning performance depends on radar coverage
 - Casualty rate depends on warning performance
 - \therefore Flash flood casualty rate depends on radar coverage

Use statistical analyses of historical data to develop model of weather radar network's impact on flash flood casualty cost reduction

- NWS storm reports (FLASH and NCEI archives)
 - Event time and location (polygons and points)
 - Cause: Heavy rain, tidal, dam break, etc.
 - Casualties: Fatalities and injuries
 - Caveat: Not every flooding event is recorded
- NWS storm warnings (IEM archive)
 - Warning time and location (polygons since October 2007)
- Data period used: October 2007 December 2018
- Only keep flash floods caused by heavy rain
- For every event search for matching warning: POD, lead time
- For every warning search for matching event: FAR

NWS = National Weather Service FLASH = Flooded Locations and Simulated Hydrographs Project NCEI = National Centers for Environmental Information IEM = Iowa Environmental Mesonet POD = probability of detection FAR = false alarm ratio

- Compute mean radar coverage parameters over upstream drainage basin, not downstream flooded area
 - Find stream gauge(s) inside event/warning polygon or nearest if event is point
 - Use USGS NHDPlus database: 19,031 stream gauges with corresponding source basin characteristics

Flood of St. Johns River, FL (2007-10-3)

USGS = United States Geological Survey NHDPlus = National Hydrography Dataset Plus

- Key weather radar data characteristics for QPE
 - Cross-radial horizontal resolution (CHR)
 - Low-altitude coverage
 - Compute fractional volume coverage (FVO) between surface and 20kft AGL

FVO includes Earth curvature, terrain blockage, and cone-of-silence effects in one metric

Flash Flood Warning vs. Radar Coverage

Better radar coverage improves flash flood warning performance

Flash Flood Benefit Model - 9 JYNC 1/15/2020

Negative binomial statistical flash flood casualty model

Casualty
$$\longrightarrow C \sim \operatorname{NegBin}(\overset{\downarrow}{\mu}, \theta)$$
 Overdispersion parameter
 $\ln \mu = k + \sum a_i x_i$

i

Predictor Variable (x_i) Tested	Most Significant Results With
Population in event area	\checkmark
Flash flood warning presence	\checkmark
Flash flood warning lead time	
Historical flash flood warning FAR in event area	
Catchment basin size (proxy for basin response time)	
Flood flashiness* (limited number of cases available)	
Fraction of population in mobile housing	\checkmark

- Flashiness* = Peak flow above flood stage / (basin area × time to peak)
- Calculated from USGS streamflow data (only small subset of NWS events matched up)

*Saharia et al., 2017: Mapping flash flood severity in the United States, J. Hydrometeorology, 18, 397–411

Negative binomial statistical flash flood casualty model

Casualty
$$\longrightarrow C \sim \operatorname{NegBin}(\overset{\downarrow}{\mu}, \theta)$$
 Overdispersion parameter
 $\ln \mu = k + \sum_{i} a_{i} x_{i}$

Predictor Variable (x_i)	Coefficient	Estimate	P-value
Population in event area	<i>a</i> ₁	0.17 ± 0.02	4 × 10 ⁻¹⁶
Warning presence	<i>a</i> ₂	-0.57 ± 0.16	3 × 10 ⁻⁴
Fraction of population in mobile housing	<i>a</i> ₃	2.2 ± 0.4	4 × 10 ⁻⁷
Intercept constant	k	-4.6 ± 0.2	< 2 × 10 ⁻¹⁶
Overdispersion parameter	θ	0.11 ± 0.0007	N/A

Presence of flash flood warning reduces casualty rate by 44%

Gridded Casualty Rate Computation

• Sum over all grid cells to get total casualty rate per year

*Grid cell size = 1/120° x 1/120°

Outline

- Motivation
- Model development
- ➡ Model Results
 - Basic scenarios
 - Benefit pool mapping
 - Summary

Annual CONUS Flash Flood Casualty Rates: Modeled vs. Actual

Scenario	Fatal	Injured (hospitalized)	Injured (treated and released)	Total	Delta baseline
0% warned	83.6	23.1	30.6	137.2	50.9
No radar coverage	77.6	21.4	28.4	127.4	41.1
NEXRAD network	52.6	14.5	19.2	86.3	
Perfect radar coverage	51.5	14.2	18.9	84.6	-1.7
100% warned	47.2	13.0	17.3	77.4	-8.9
Actual mean (2007– 2018)	63 ± 10	41 ± 15		104 ± 20	N/A
Actual median (2007– 2018)	59 ± 7	23 ± 8		86 ± 13	N/A

No radar coverage: FVO = 0 and CHR = ∞ everywhere Perfect radar coverage: FVO = 1 and CHR = 0 everywhere

Modeled casualty rates closely match actual rates

- Use value statistical life* (VSL) to monetize casualties
 - \$11.6M (fatality), \$3.1M (injury—hospitalized), \$0.55M (injury—treated and released)

Flash Flood Benefit Model - 14 JYNC 1/15/2020

*"Guidance on treatment of the economic value of a statistical life in U.S. Department of Transportation analyses—2016 adjustment," Memorandum to secretarial officers and modal administrators

Annual CONUS Flash Flood Casualty Cost Model Results

Scenario	Fatal (\$M)	Injured (hospitalized) (\$M)	Injured (treated and released) (\$M)	Total (\$M)	Delta baseline (\$M)
0% warned	969.6	71.2	16.7	1057	392
No radar coverage	899.8	66.1	15.5	981	316
NEXRAD network	609.9	44.8	10.5	665	
Perfect radar coverage	597.7	43.9	10.3	652	-13
100% warned	547.0	40.2	9.4	596	-69

Current radars provide over \$300M per year in flash flood benefits

- Remaining benefit pool for radar network upgrade is modest
 - On average, current radars provide good coverage for flash flood warning guidance
 - Pool may increase if rapid scan benefit can be claimed but ultimately limited by 100% warned limit
 - Other aspects of casualty reduction should be addressed, e.g., warning dissemination, public education, etc.

Remaining Benefit Pool Map

- Difference between "perfect coverage" case and NEXRAD network case
- Guidance for placing gap-filling radars with respect to flash flood benefits

- Statistical geospatial model developed for flash flood casualty reduction benefits associated with weather radar coverage
- Model yields ~\$320M per year benefit for current CONUS NEXRAD network
- Remaining benefit pool for radar coverage enhancement is modest
- Follow-up question: Do faster scan updates improve warning performance?
 - Investigate with existing (MESO-)SAILS, MRLE data

MESO = multiple elevation scan option SAILS = supplemental adaptive intra-volume low-level supplemental scan MRLE = mid-level rescan of low-level elevations

Backup Slides

Stream Gauge and Source Basin: Geospatial Mappings

Source Basins Associated with Stream Gauges

Areas Associated with Closest Stream Gauge

Flash Flood Warning Statistics Before and After Dual-Pol Upgrade

Radar coverage vs. flash flood warning performance relation is robust

Flash Flood Benefit Model - 20 JYNC 1/15/2020

Combined Annual CONUS Tornado and Flash Flood Cost Model Results

Scenario	Tornado (\$M)	Flash flood (\$M)	Total (\$M)	Delta baseline (\$M)
No radar coverage	3904	981	4885	851
NEXRAD	3385	665	4050	16
NEXRAD, TDWR	3369	665	4034	
NEXRAD, TDWR, rapid scan	3036	665	3701	-333
Perfect coverage	3186	652	3838	-196
Perfect coverage, rapid scan	2693	652	3345	-689

Benefits and benefit pools are dominated by tornado cost avoidances

Publications

- Cho, J. Y. N., and J. M. Kurdzo, 2019: Weather radar network benefit model for tornadoes. *J. Appl. Meteor. Climatol.*, 58, 971-987
- Cho, J. Y. N., and J. M. Kurdzo, 2019: Monetized weather radar network benefits for tornado cost reduction. Project Rep. NOAA-35, MIT Lincoln Laboratory, Lexington, MA, 88 pp.
- Cho, J. Y. N., and J. M. Kurdzo, 2019: Weather radar network benefit model for flash flood casualty reduction. *J. Appl. Meteor. Climatol.*, under review