

### NATIONAL WEATHER SERVICE

**Building a Weather-Ready Nation** 

# Validation of NWS Hydrologic Ensemble Forecast Service (HEFS) Real-time Products at the Middle Atlantic River Forecast Center

Seann Reed, Alaina MacFarlane

1/13/2020 AMS Annual Meeting Boston

# **Overview**

- What is HEFS?
- Validation methods for short-term products (0-10 days)
  - Compare to MMEFS
  - Compare to deterministic forecasts
- Results
- Next steps

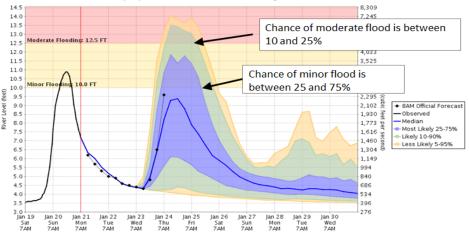
#### **Hydrologic Ensemble Products at MARFC**

| ESP                                                                     | MMEFS                                                          | HEFS*                                                                         |
|-------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------|
| 1990's                                                                  | 2012                                                           | 2017                                                                          |
| Accounts for soil moisture and snow states                              | Accounts for soil moisture and snow states                     | Accounts for soil moisture and snow states                                    |
| Runs historical precipitation and temperature through hydrologic models | Runs raw meteorological model output through hydrologic models | Runs bias corrected and downscaled met model output through hydrologic models |
| 30 to 90 day outlooks                                                   | 7 day outlooks                                                 | Seamlessly blends forecasts for different lead times up to 365 days           |
| No met models                                                           | GEFS v.11, NAEFS, SREF                                         | GEFS v.10 (current implementation)                                            |
| Once per day                                                            | Multiple times per day                                         | Once per day                                                                  |

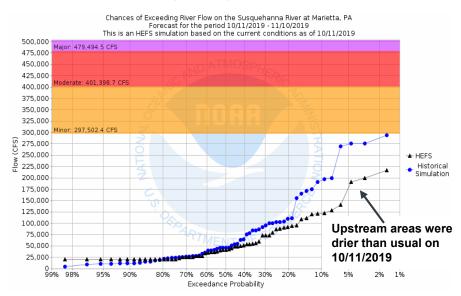
<sup>\*</sup> Software, science, and support from the NWS Office of Water Prediction (OWP)



### **HEFS Graphics Currently on water.weather.gov/ahps**


10-day Short-term Hydrograph Product Martinsburg, WV 273 mi<sup>2</sup>

#### 10 Day River Level Probabilities


Used to Estimate the Range of Possible River Levels [without ENSPOST (Experimental)]

Caution: Official forecast may be updated after this graph is generated. For the latest official forecast, go to http://water.weather.gov/ahps

#### Opequon Creek near Martinsburg, WV (MBGW2)



#### 30-day Exceedance Probability Product Marietta, PA 26,000 mi<sup>2</sup>



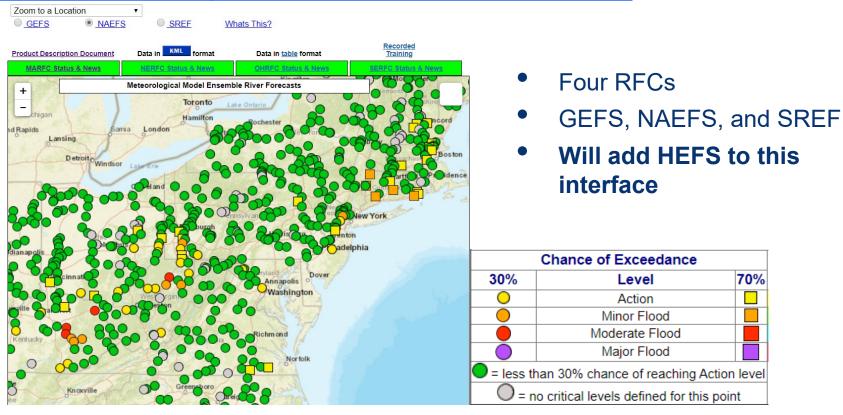
Model runtime: 07:00 AM EST Jan 21 2019 Middle Atlantic River Forecast Center

HEFS graphics are available at 117 of our forecast points

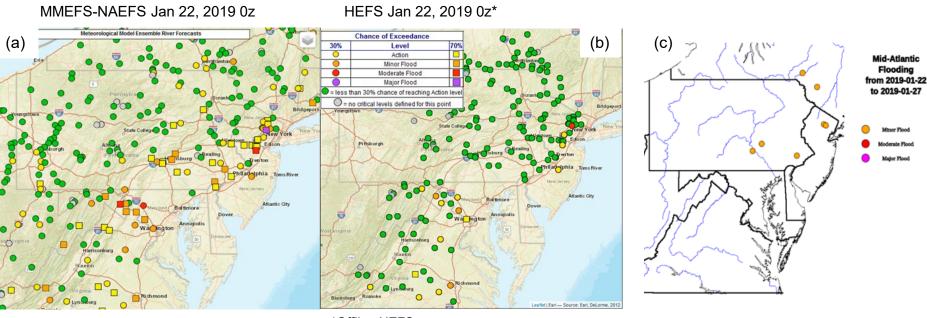


Time and Day (EST)

# Who Uses Short-term Hydrologic Ensemble Forecasts?


- RFC and WFO Forecasters
- Emergency managers
- Water Resources Managers
- Hydroelectric Power Plant Operators

# **Transition from MMEFS to HEFS**


- MMEFS 7-day outlook products popular since 2012
- We are now producing 10-day HEFS products
- Do we continue to produce both products?
- How accurate are they?

#### **MMEFS Map-based Web Interface**

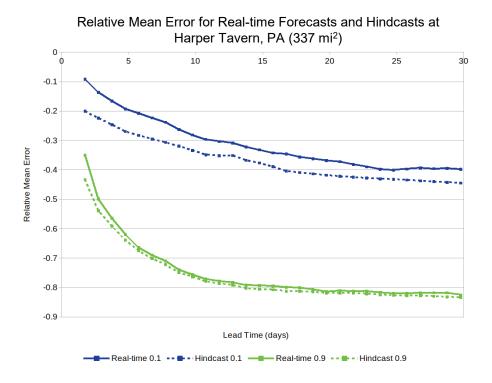
https://www.weather.gov/erh/mmefs?Lat=40&Lon=-77&Zoom=7



# **Map-based Event Validation Example**



\*Offline HEFS maps


MMEFS-NAEFS: 5 correct, 22 false alarms

HEFS: 1 correct, 3 false alarms

2.5 Day Lead Time



# Which forecasts to validate?



- Real-time products shorter record
- Hindcasts no state updating
- We validated realtime products in this study

## **Validation Data**

- Archived HEFS and MMEFS-NAEFS forecasts from Jan 2017 to Sep 2019 (wet years!)
- Observed stage data from 103 points
  - ice affected stages set to missing
- For contingency statistics:
  - pooled data from many points given short analysis period
  - exceedances in a 2 6 day forecast window are tallied, effectively pooling lead times

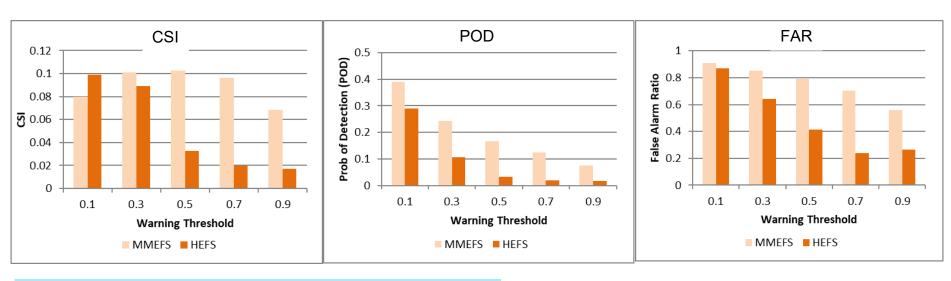
# **Contingency Statistics**

| Contingency | Obs Y | Obs N |
|-------------|-------|-------|
| Fcst Y      | A     | В     |
| Fcst N      | С     | D     |

$$POD = A/(A+C)$$

$$FAR = B/(A+B)$$

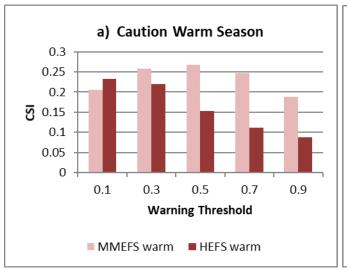
CSI = A/(A+B+C)

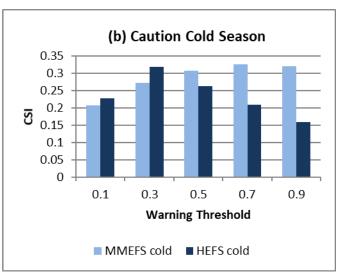

Probability of
Detection=Fraction of obs
floods predicted correctly

False alarm ratio=fraction of fcst floods which do not occur

Critical success index=fraction of either obs or fcst floods predicted correctly

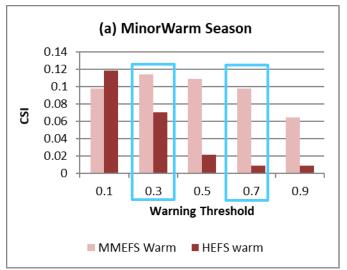
#### CSI, POD, FAR for Predictions Exceeding Minor Flood

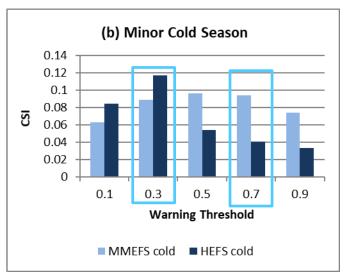

(results pooled for 103 locations, 2.75 years of daily forecasts)




A 0.1 warning threshold means the ensemble forecasts predict action stage if 10% of the ensemble members exceed action stage. 0.1 is a much more conservative threshold than 0.9 when 90% of members would have to exceed action stage.

#### **CSI for Predictions Exceeding Caution**

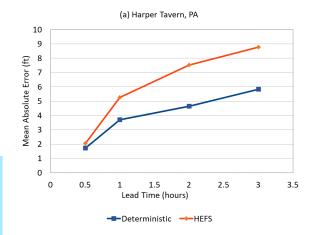

(results pooled for 103 locations, 2.75 years of daily forecasts, and two seasons)



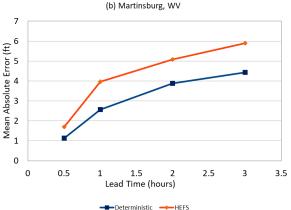



#### **CSI for Predictions Exceeding Minor Flooding**

(results pooled for 103 locations, 2.75 years of daily forecasts, and two seasons)

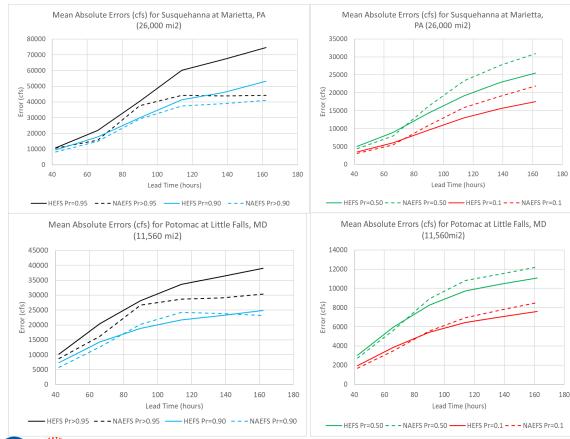





Mapped thresholds

#### Deterministic vs. HEFS Ensemble Mean Forecast




Small, flashy basins



- Mean absolute errors (MAE) for only forecast-observed pairs above flood stage
- Includes 14 flood events for Harper Tavern and 20 for Martinsburg
- For floods, we emphasize deterministic forecasts in days 1-3, then use ensemble forecasts for 3 days and beyond; however, ensemble information may be used to inform our deterministic QPF.

#### MAE for High and Low Flows in Large Basins



- Left panels: MAE for only forecast-observed pairs above the 90<sup>th</sup> and 95<sup>th</sup> percentiles
- Right panels: MAE for only forecast-observed pairs above the 10<sup>th</sup> and 50<sup>th</sup> percentiles
- NAEFS has lower errors for flows>95th percentile; HEFS has lower errors for flows >10<sup>th</sup> and flows > 50<sup>th</sup> percentile

### **Conclusions**

- MMEFS has higher PODs but also higher FARs compared to HEFS
- HEFS and MMEFS CSIs are comparable at low warning thresholds but MMEFS CSIs are better at higher warning thresholds
- For minor flooding, HEFS does better in the cold season at the 0.3 warning threshold, which is the lower of two thresholds we display on our maps; HEFS does poorly at the other map display threshold of 0.7
- Both models predict Caution stage more accurately than Minor flooding
- HEFS does better than MMEFS in terms of MAE for low and medium flows in large basins – water supply applications
- For flood events in small basins, deterministic model MAE is substantially lower than HEFS ensemble mean MAE in days 1-3
- Continue to run and validate both HEFS and MMEFS; work to improve HEFS...



# **Next Steps**

- GEFS v. 12 into HEFS
- HEFS multiple runs per day get closer to deterministic forcings/Mods
- HEFS improved bias correction for high flow events (NWS Office of Water Prediction is working on this.)