

A hybrid empirical-Bayesian artificial neural network model of salinity in the San Francisco Bay-Delta estuary

Christine Lew, Tetra Tech christine.lew@tetratech.com

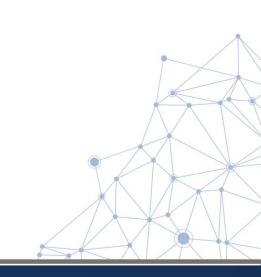
Presentation at the 19th Conference on Artificial Intelligence for Environmental Science American Meteorological Society Annual Conference

January 14, 2020

TETRA TECH

Presentation Overview

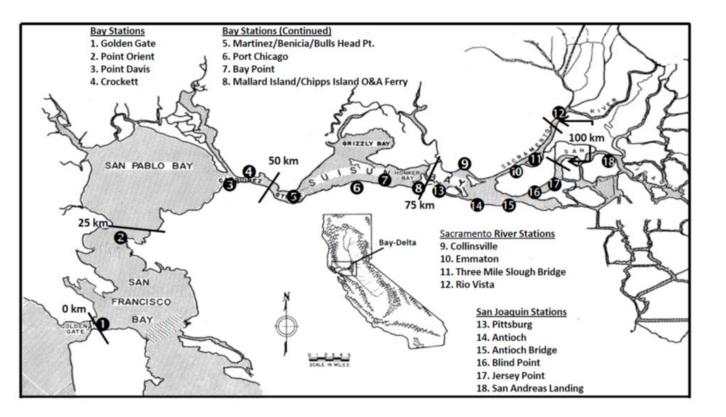
- Why develop an ANN model for salinity?
- Data-driven ANN models vs Hybrid ANN model
- Predictive and structural validation
- Input data and model selection, model training approach
- Model results
- Sea level rise case study



Why develop an ANN model for salinity?

- Supports the need for making rapid salinity predictions across multiple locations for Delta outflow management
 - Health of highly diverse ecosystem
 - Management of freshwater withdrawals for consumption, irrigation
- ANNs are already in use within Delta models; can we improve and supplement the existing tools?
- From a process perspective, salinity in the western Delta is a complex function of current and antecedent flows, plus other variables; a key objective of the task was the exploration of these other variables (specifically tidal effects)

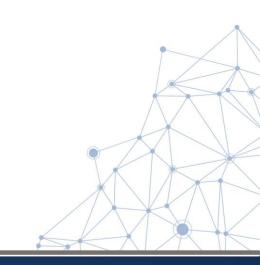
Salinity in the western Delta and San Francisco Bay



- X2 position (marks the low salinity zone)
 - Operationally position of the 2 parts per thousand bottom salinity isohaline
 - Regulatory interpolated as an equivalent surface salinity from fixed monitoring stations near the surface, reported as distance from the Golden Gate bridge in km

Overview of Approach

- Used feedforward ANNs, widely used in water resources applications
- Phase 1: Data-driven ANNs, uses only input and output data and no pre-defined model structure; data for WY 1974-2012
- Phase 2: Hybrid ANNs where an empirical DSG model (Hutton et al., 2015) is used to fit the salinity data and then an ANN is used to correct the empirical model fit; data for WY 1922-2012

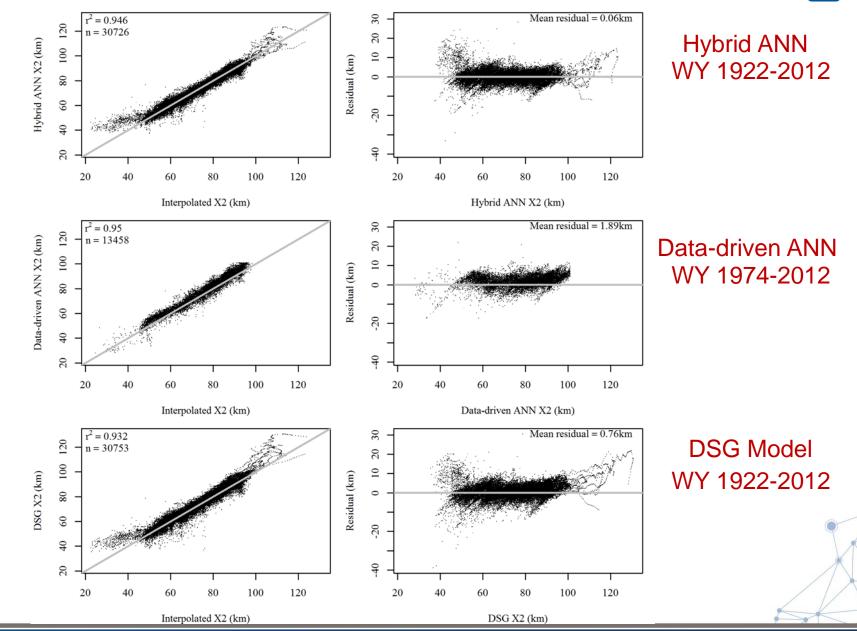


Definition of Terms

Replicative validity – matches training data Predictive validity – matches validation data

Structural validity - The condition of representing inputs and outputs in a manner that is physically plausible, given an a priori understanding of a system

Fit to X2 Values (Predictive validation)



7

Structural Validation of Data-Driven Models

• Evaluate sensitivity of change in the sea level variable

- We expect that an increase in sea level should result in a positive effect on salinity at a fixed location, or a positive effect on X2 for the same Delta outflow
- Data-driven models with more hidden neurons fit the data better, but had an inconsistent response to an imposed sea level change
- Proposed solution: Vary ANN size to control response to MSL
- However, smaller networks had a better structural response, but poorer predictive validation

Alternative Approach: Hybrid ANN

- Takes advantage of knowledge of the system
- Fit salinity data using empirical model, the Delta Salinity Gradient (DSG) model
- Remaining error fit with ANN
- The role of the ANN is thus more limited and only focused on improving the DSG model fit
- Additional constraint:
 - Constrain weights such that MSL increase can only result in a positive effect on X2
 - Only the sign of the change was constrained, not the magnitude

Model Inputs and Outputs

- Explored various combinations of inputs with regard to ability to fit observed salinity data at key locations along the salinity gradient
- Final Inputs
 - Station distance (km) from Golden Gate
 - Daily freshwater flow to estuary
 - Tides daily mean coastal water level and daily tidal range (not in original DSG model)
- Model Outputs used for Training ANNs
 - Used data set of salinity compiled from grab sample and continuous data, spanning WY 1922-2012
 - Data cleaned to remove erroneous values, and filled where short gaps exist
 - X2 computed based on log-linear interpolation of salinity values
 - Separate sets of X2 developed for the Sacramento and San Joaquin Rivers

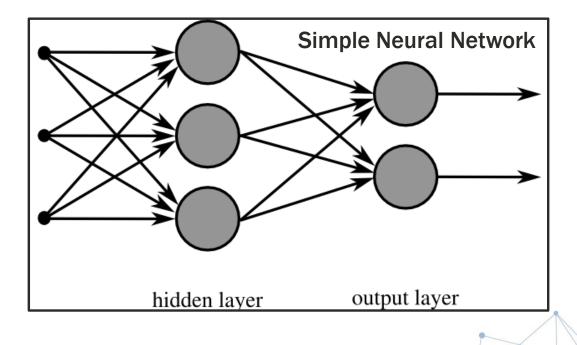
ANN Model Details

• Architecture and Structure

- Feedforward multilayer perceptron
- Time lag of 28 days
- 3 hidden neurons

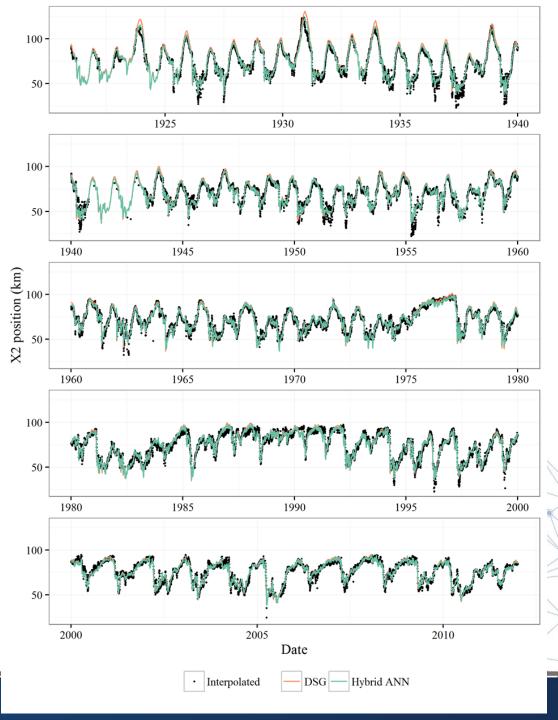
Calibration Approach

- Used a Bayesian approach for training to constrain the weights such that only a positive response to sea level rise was possible
- 15% of the data used for training

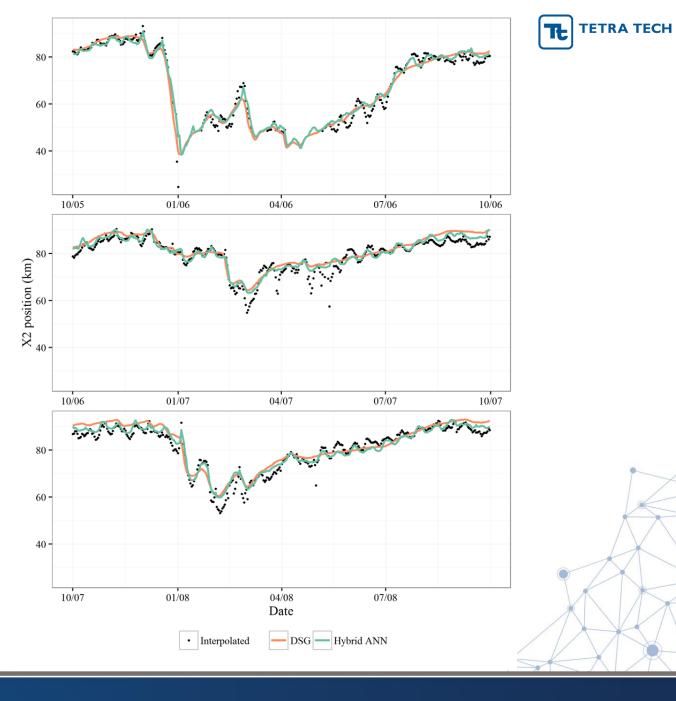


Results: Observed X2 Fits

		Sacramento	San Joaquin
Count		30,753	30,224
Mean Residual (km)	DSG	0.76	-0.31
	Hybrid ANN	<0.01	-0.07
Coefficient of Determination (r2)	DSG	0.93	0.93
	Hybrid ANN	0.95	0.94
Standard Error (km)	DSG	3.63	4.03
	Hybrid ANN	3.22	3.73

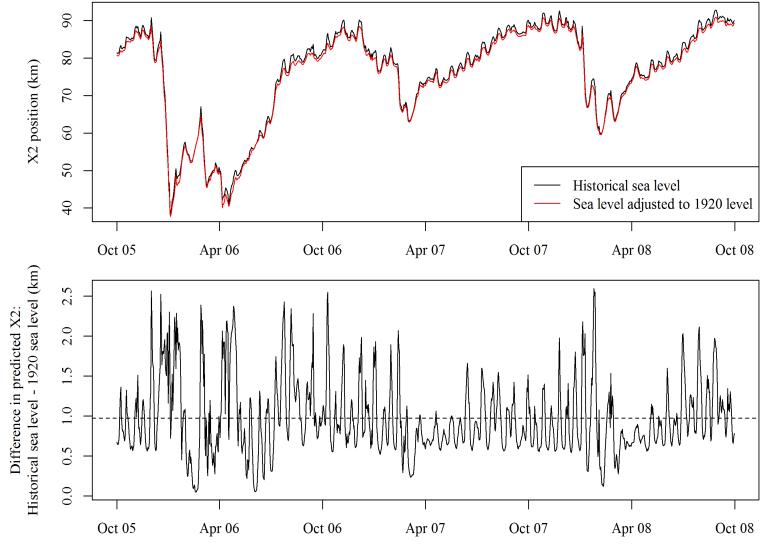


X2 over a shorter period



Case Study: Isolate Historical Sea Level Rise Effects

- Setup
 - De-trended historical Golden Gate mean water level time series using linear regression to derive a 1920level input time series
 - Maintained other model inputs at baseline conditions (with a water level difference of +18.3 cm between the two scenarios in 2012)
- Results
 - Historical sea level rise has resulted in slightly greater salinity intrusion into the estuary (X2 shifted ~1km upstream)



Date

Key Findings

- Data-driven networks had strong predictive validity; however, even with the large database available, structural validation was a challenge
- Used hybrid approach, that combined an empirical model (DSG model) with an ANN
 - This approach, in conjunction with a constraint on the weights in relationship to sea level rise, resulted in hybrid ANN models that were predictively and structurally valid—and provided better fits than existing models over a 91-year period of record
- Hybrid approach can be considered a maturation of ANN methodology in water resources, where the strengths are best used in conjunction with existing modeling approaches
 - Use of model to fit data a priori allows for use of longer data set, exposing model to wider range of conditions
 - Allows rapid, more robust modeling predictions
 - Addresses skepticism of "black box" ANN models

Publication

• This work is published in *Environmental Modeling and Software (open access)*

Rath, J.S., P.H. Hutton, L. Chen, and S.B. Roy. A hybrid empirical-Bayesian artificial neural network model of salinity in the San Francisco Bay-Delta estuary. Environmental Modeling & Software 93 (2017) 193-208.

