Sinuosity as a Metric for Quantifying Tropospheric Polar Vortex Modification

UNIVERSITY

atALBANY

Associated with Arctic Cyclones

on

Mansour El Riachy*, Daniel Keyser, and Lance Bosart

 1) MotivationUniversity at Albany, SUNY

10)
 West U.S. ACs: Fall

- ACs originating west of Great Lakes: Bolded track corresponds to AC track

Synoptic Composites for West U.S. ACs: Fall

East U.S. ACs, on average, tend to be associated with flow that transitions from high to low sinuosity

- West U.S. ACs, on average, tend to be associated with flow that transitions from low to high sinuosity an upstream trough
- ACs have been categorized in this study according to genesis location cycles

Poster number: 631
is research was supported by Office of Naval
Research Grant No00014-18-1-2200
East U.S. ACs: Fall

Arctic cyclones (ACs) are synoptic-scale features that are often responsible for incursions of warm, moist air from middle latitudes into the Arctic

AC-related warm-air incursions can result in longitudinally varying horizontal temperature gradients, which are associated with the amplification of the tropospheric polar vortex

Amplification of the tropospheric polar vortex is associated with flow patterns that cause ACs originating in middle latitudes to track into the Arctic

Considerable variability occurs in the evolution of the tropospheric polar vortex for these aforementioned flow patterns

2) Overview

Identify pathways where the frequency of ACs originating in middle latitudes and tracking into the Arctic is high

Identify synoptic patterns that are conducive for ACs to track into the Arctic from middle latitudes

Diagnose the modification of the tropospheric polar vortex associated with ACs that track into the Arctic from middle latitudes by quantifying the waviness of the equatorward vortex edge

3) Data and Methods

Create a 1979-2018 AC climatology
Obtain cyclone tracks from 1° ERA-Interim cyclone climatology prepared by Sprenger et al. (2017)

ACs are deemed cyclones that last ≥ 2 days and spend at least some portion of their lifetimes in the Arctic ($>70^{\circ} \mathrm{N}$)

4) Sector Identification

AC tracks are identified, and 90
longitudinal sectors are center
at locations of high AC track frequency

An AC that originates or terminates outside of a given sector is associated with that cyclone at $70^{\circ} \mathrm{N}$ falls 5° of
 longitude inward from the bounds of that sector

Calculate area of the sector
enclosed by the 300 hPa
geopotential height threshold Frauenfeld et al. (2003)

Determine the equivalent latitude (red) corresponding to the calculated area of the sector

Calculate the ratio of the length of the 300 hPa geopotential height threshold contour (blue) to the length
of the equivalent latitude
sector (red)
Following Frauenfeld et al. (2003), the 300 hPa geopotential height threshold for the polar vortex edge varies by month from a minimum of 8880 m in the cold season to a maximum of 9240 m in the warm season
6) Sinuosity

- A metric describing flow
amplitude
- Martin et al. (2016) calculated
sinuosity for 500 hPa $\begin{aligned} & \text { sinuosity for } 500 \mathrm{hPa} \\ & \text { geopotential height contours }\end{aligned} \quad S_{A B}=\frac{(\text { (ength of CONTOUV) }}{(\text { Lengigh of SECMNMNT) }}$

7) Circumpolar Sinuosity

Calculate area enclosed by the 300 hPa geopotential height threshold contour (blue) determined by Frauenfeld et al. (2003)

Determine the equivalent latitude (red) corresponding to the calculated area

Calculate the ratio of the length of the 300 hPa geopotential height threshold contour (blue) to the length contour (buivalent latitude of the equivalent latitude
circle (red)
circle (red)

References

ACs originating east of Great Lakes: Bolded track corresponds to AC track with maximum sectorial sinuosity >90 percentile as denoted in section

Flow Evolution for East U.S. ACs: November 1987

Flow Evolution for East U.S. ACs: November 1987

Synoptic Composites for East U.S. ACs: Fall

11) Summary

- Modification of the tropospheric polar vortex edge associated with ACs was quantified using sinuosity

Flow patterns conducive to ACs tracking into the Arctic from middle latitudes are characterized by a downstream blocking ridge and

ACs may be categorized in future research according to oceanic vs. continental AC life cycles and sinuosity trends during AC life

