UNIVERSITY ATALBANY

*E-mail: mriachy@albany.edu

State University of New York

1) Motivation

- Arctic cyclones (ACs) are synoptic-scale features that are often responsible for incursions of warm, moist air from middle latitudes into the Arctic
- AC-related warm-air incursions can result in longitudinally varying horizontal temperature gradients, which are associated with the amplification of the tropospheric polar vortex
- Amplification of the tropospheric polar vortex is associated with flow patterns that cause ACs originating in middle latitudes to track into the Arctic
- Considerable variability occurs in the evolution of the tropospheric polar vortex for these aforementioned flow patterns

2) Overview

- Identify pathways where the frequency of ACs originating in middle latitudes and tracking into the Arctic is high
- Identify synoptic patterns that are conducive for ACs to track into the Arctic from middle latitudes
- Diagnose the modification of the tropospheric polar vortex associated with ACs that track into the Arctic from middle latitudes by quantifying the waviness of the equatorward vortex edge

3) Data and Methods

- Create a 1979–2018 AC climatology
- Obtain cyclone tracks from 1° ERA-Interim cyclone climatology prepared by Sprenger et al. (2017)
- ACs are deemed cyclones that last \geq 2 days and spend at least some portion of their lifetimes in the Arctic (>70°N)

4) Sector Identification AC tracks are identified, and 90° longitudinal sectors are centered at locations of high AC track 70°N 60°N frequency An AC that originates or terminates outside of a given sector is associated with that sector if the longitude of the cyclone at 70°N falls 5° of longitude inward from the bounds of that sector References Cavallo, S. M., and G. J. Hakim, 2010: Composite structure of tropopause polar cyclones. *Mon. Wea. Rev.*, **138**, 3840–3857.

- Frauenfeld, O. W., 2003. Northern Hemisphere circumpolar vortex trends and climate change implications. J. Geophys. *Res.*, **108**(D14), https://doi.org/10.1029/2002JD00295
- Martin, J. E., S. J. Vavrus, F. Wang, and J. A. Francis, 2016: Sinuosity as a measure of middle tropospheric waviness. http://marrella.aos.wisc.edu/SIN paper JCLIM FIN.pd
- Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method an global climatology. J. Atmos. Sci., **63**, 2486–2507, https://doi.org/10.1175/JAS3766 Sprenger, M., G. Fragkoulidis, H. Binder, M. Croci-Maspoli, P. Graf, C.M. Grams, P. Knippertz, E. Madonna, S. Schemm, B.
- Škerlak, and H. Wernli, 2017: Global climatologies of Eulerian and Lagrangian flow features based on ERA-Interim. Bull. Amer. Meteor. Soc., 98, 1739–1748, https://doi.org/10.1175/BAMS-D-15-00299.

