# A flow-dependent horizontal mixing length scale and its impact on simulations of Harvey (2017) in HWRF 

Weiguo Wang ${ }^{1}$, Bin Liu ${ }^{1}$, Lin Zhu ${ }^{1}$, Zhan Zhang ${ }^{1}$, Avichal Mehra ${ }^{2}$, Vijay Tallapragada ${ }^{2}$
${ }^{1}$ IMSG at EMC/NCEP/NWS/NOAA, College Park, MD 20740 ²EMC/NCEP/NWS/NOAA, College Park, MD 20740

## Introduction

- Tropical Cyclone (TC) simulations are sensitive to horizontal mixing length scale $\left(L_{h}\right)^{[1][2][3]}$
- A "constant" $L_{h}$ is usually used in TC simulations, while observational studies suggested $L_{h}$ is not a constant at all ${ }^{[4][5]}$.
- A new formation of $L_{h}$ is proposed and tested in HWRF ${ }^{[6]}$


## Horizontal length scale formulation

Horizontal eddy diffusivity, $K_{h}$ :

$$
K_{h}=L_{h}^{2}\left|D_{h}\right|
$$

$D_{h}$-- horizontal deformation.

## Current HWRF:

$L_{h}-\boldsymbol{c} \Delta$ (grid size) with $\boldsymbol{c}$ a constant.
New:
$L_{h}$-- $F\left(L_{h 1}, L_{h 2}\right)$, a function of length scales of shear and stretching.

## HWRF configuration

- Same as operational HWRF in 2017 except DA is turned off.
- Three domains with $18-6-2 \mathrm{~km} ; 75$ levels in the vertical with top of 10 hpa .
- 3 experiments with different $L_{h}$ over D3

| Experiment | Description |
| :---: | :--- |
| L750 | $L_{h} \approx 750 \mathrm{~m}$ as in oper HWRF |
| L2KM | $L_{h} \approx 2 \mathrm{~km}$ |
| LVAR | Flow-dependent $L_{h}$ |

Comparisons with observations


Left: The new length scale is close to that derived from observations ${ }^{[5]}$. Right: $K_{h}$




New flow-dependent $L_{h}$ improves 5-day track forecasts of early cycles


Red lines: New $L_{h}$ improves both track \&intensity for >2 days forecasts

## Conclusions

New $L_{h}$ is closer to obs-derived values and improves Harvey(2017) forecasts.

## Reference

