Impact of Data Assimilation on Simulations of Continental Shallow Cumulus Near the ARM Southern Great Plains Site During HI-SCALE Campaign

> Sheng-Lun Tai, Jerome Fast, William I. Gustafson Jr., Duli Chand, Zhe Feng, Rob Newsom

> Pacific Northwest National Laboratory, Richland, WA

Motivation

Why we study shallow cumulus (ShCu)?

- small (diameter < 1 km), non-precipitating, wide-spread
- atmospheric stability, Earth's radiative budget, transition to convection
- poorly represented in climate model which makes future projection more uncertain
- involved processes: ambient environment, land-atmosphere, boundary layer, aerosol, etc.

- its evolution strongly controls formation and growth of ShCu
- most uncertain layer in weather and climate models
- need more constraints

Near-surface warm bias over U.S. SGP

Approach

Holistic Interactions of Shallow Clouds, Aerosols and Land Ecosystems (HI-SCALE) provide critical in-situ measurements of the boundary layer, cloud microphysics and

dynamics, and aerosol properties

- Multi-scale data assimilation integrates available observations to constrain:
 - large-scale weather pattern and mesoscale ambient environmental conditions
 - boundary layer structure and properties

Pacific Northwest

Forecast model and assimilation scheme

Weather Research and Forecasting (WRF) ARW V3.9.1.1

- four one-way nested domains.
- 36, 12, 4, 1.3 km resolution
- 74 sigma layers with finer grid in BL
- d04 covers all ARM SGP sites

Sonde, Raman Lidar, wind profilers, Doppler lidars, SGP mesonet, Oklahoma mesonet

Multi-physics ensemble

325 km

	PBL	Cumulus (d01,d02)	MP	Land
7	MYJ	KF_CuP	Morrison	Noah
	YSU	Grell 3D Ensemble	Thompson	Noah-MP
	MYNN	Tiedtke	WSM6	

Community Gridpoint Statistical Interpolation V3.6

- 4DEnVar (outperforms 3DVar and 3DEnVar)
- Hybrid (0.85 flow-dependent + 0.15 static)
- 54 multi-physics ensemble members for all domains
- NCEP NAM model forecasts → static

Pacific Northwest

Experimental design

Target period: 12 UTC Aug. 30 to 00UTC Aug. 31, 2016

Assimilation strategy:

- 5 times 6hourly assimilations
- 3 hours 4DEnVar window
- Initialization time varies due to adaptive needs of spin-up

Experiments

Experiment	I.C. & B.C.	Assimilated dataset
FNL_BC	NCEP FNL (1°)	None
HRRR_BC	HRRR (3 km)	None
4DEnVar	NCEP FNL (1°)	GDAS (conventional, satellite) + ARM (sonde, RWPs, Raman Lidar, mesonet) + OK Mesonet
4DEnVar_GDAS	NCEP FNL (1°)	GDAS (conventional, satellite)

00

5

Observed and simulated clouds at noon around the ARM SGP site

Visible Satellite Image ~ 1950 UTC

7

Lifecycle of shallow cumulus clouds: CBH estimated by Doppler Lidars

Pacific Northwest

Convective boundary layer (CBL) evolution evaluated by CF radiosonde

Pacific Northwes

Moisture mixing in CBL: comparison with Raman Lidar observation at CF

- Raman Lidar observed vertical moisture mixing due to turbulence within CBL until 22Z
- FNL_BC, HRRR_BC, 4DEnVar_GDAS become too dry after around 19Z
- 4DEnVar is able to maintain reasonable amount of moisture mixing within CBL through the daytime period
- More moisture within CBL increases instability

Convective Boundary Layer Meteorological Conditions evaluated by G-1 aircraft measurements

Pacific Northwe

Sustaining transitioned convective Clouds: Impact of additional assimilation at 18Z

Surface Increments at 18Z

- GOES-13 retrieval shows tendency of increasing CWP
- 18Z assimilation helps maintain convective strength

Pacific Northwest 20Z

Strengthened Cold Pools: against OK Mesonet temperature

0.50E+01

Conclusion and next step

- Data assimilation works reasonably well to constrain cloud-resolving model especially within boundary layer, leading to more accurate ShCu and convective cloud simulation
- HI-SCALE field campaign datasets complements data assimilation and modelobservational analysis
- Remaining uncertainty on cloud presence can be further constrained by assimilation of hydrometeors (cloud water path, radar reflectivity)

Providing I.C. and B.C. to reduce uncertainties in LES :

- large-scale weather pattern and mesoscale ambient environmental condition
- boundary layer structure and properties

Parameterized processes of land-atmosphere coupling, PBL evolution, and aerosol effects are challenging but essential components on the path toward better prediction of ShCu

