

DISTRICT

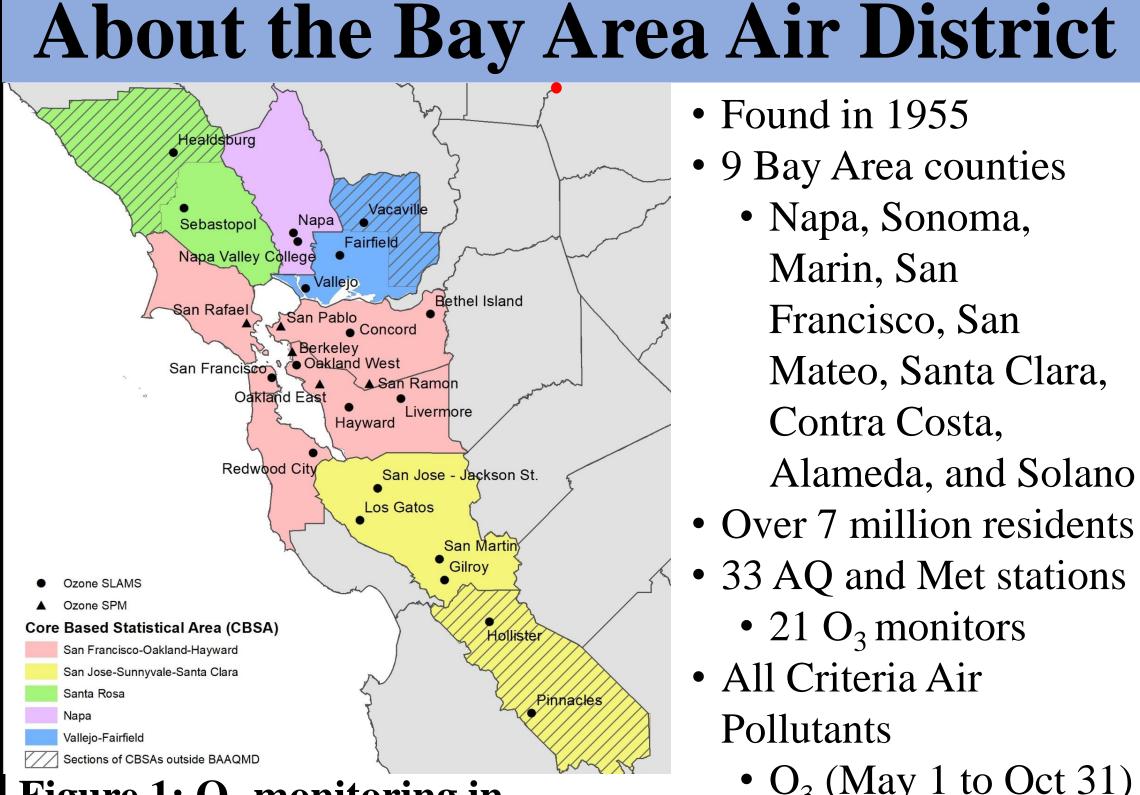


Figure 1: O₃ monitoring in the Bay Area

• Found in 1955

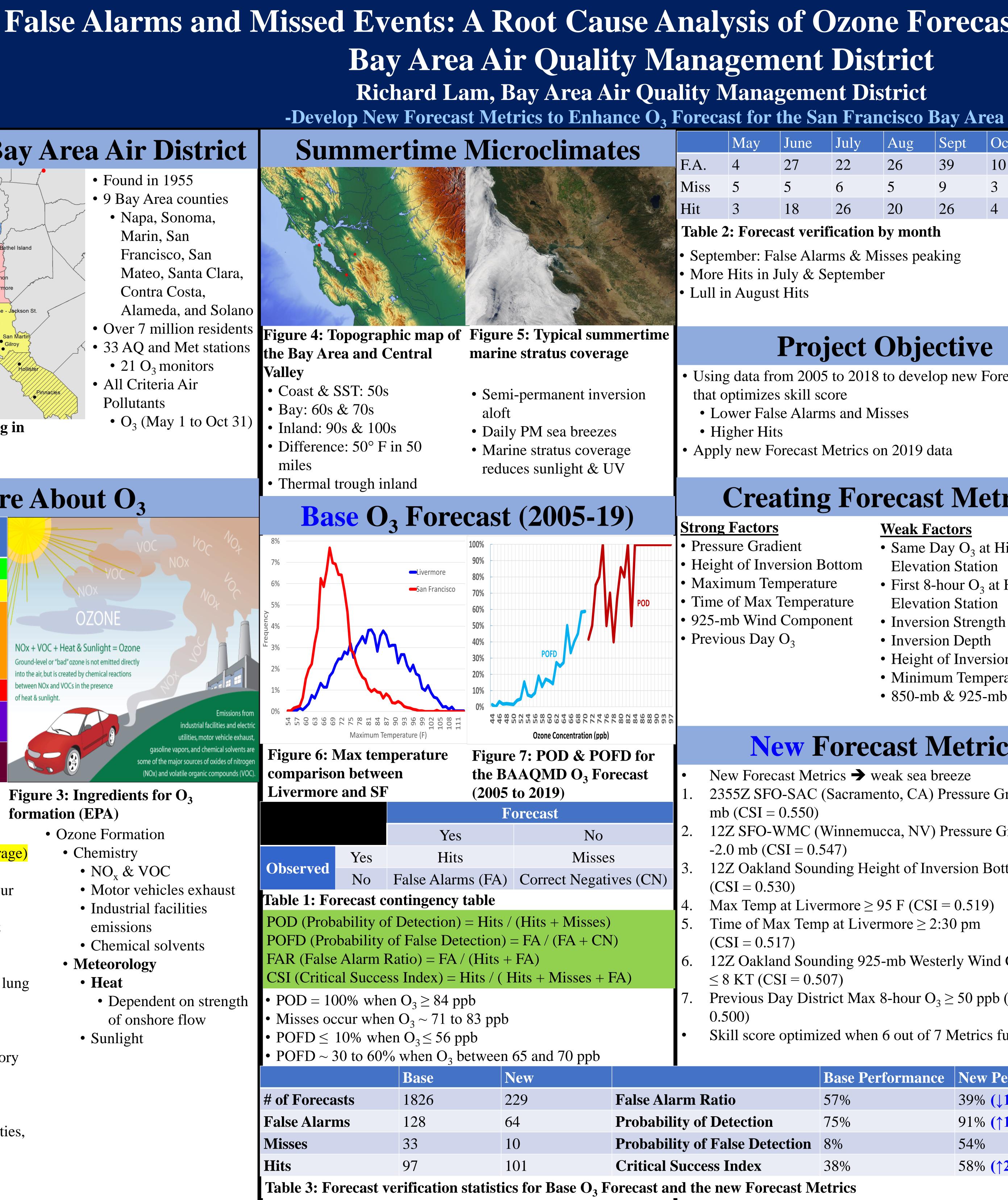
- 9 Bay Area counties
- Napa, Sonoma, Marin, San Francisco, San Mateo, Santa Clara, Contra Costa,
- Alameda, and Solano
- 33 AQ and Met stations
- 21 O₃ monitors • All Criteria Air
- O_3 (May 1 to Oct 31)

More About O₃

AQI	Index
Category	Value
Good	0 to 50
Moderate	51 to 100
Unhealthy	101 to 150
for	
Sensitive	
Group	
Unhealthy	151 to 200
Very	201 to 300
Unhealthy	
Hazardous	301 and
	higher

Figure 2: Air Quality Index (EPA)

- National Standard: • **70 ppb** (8-hour average)
- Exceedance (USG):
- $[O_3] \ge 71 \text{ ppb}$ (8-hour average)
- Spare the Air Alert issued
- Health impact • Respiratory system, lung
- function, asthma Vulnerable population
- Children, elderlies, people with respiratory diseases, active individuals
- Call to action
- Limit outdoor activities, take public transit, carpool, bike


NOx + VOC + Heat & Sunlight = Ozone Ground-level or "bad" ozone is not emitted direct into the air, but is created by chemical reactions between NOx and VOCs in the presence of heat & sunlight.

> Emissions fror industrial facilities and electr utilities, motor vehicle exhaust gasoline vapors, and chemical solvents ar some of the major sources of oxides of nitroge (NOx) and volatile organic compounds (VO

Figure 3: Ingredients for O₃ formation (EPA)

- Ozone Formation
 - Chemistry
 - $NO_x & VOC$
 - Motor vehicles exhaust
 - Industrial facilities emissions
 - Chemical solvents
 - Meteorology
 - Heat
 - of onshore flow
 - Sunlight

Contact: Richard Lam, Air Quality Meteorologist, Bay Area Air Quality Management District | **Email:** <u>rlam@baaqmd.gov</u> | **Website:** <u>www.baaqmd.gov</u>

lysis of Ozone Fo	recast Challeng
agement District	
Management District	

ccas		IC Da		ICISCO B	ay A									
Ι	May J	lune	July	Aug	Sept	Oct	Total	An An	nlving	Metr	ics to	2019]	Data	
, Ζ		27	22	26	39	10	128	• 19 Ca						
S S		-	6		9	3	33		aring new Fo	orecast Meti	rics (FM)	with:		
		18	26		26	4	97	•	17 In-House					
ole 2: Forecast verification by month								• 2016 In-House Regression (2016)						
ptember: False Alarms & Misses peaking						 NOAA CMAQ Model (NOAA) BAAQMD Forecaster (FOR) 								
ore Hits in July & September all in August Hits														
	8	~							2017 Equation	2016		BAAQMD Forecaster		
	Т			Oh :	- 4			False	4	8	0	101ccastc1	7	
	ľ	ro	ject	Objec		e		Alarm		0	U	10		
U				to develog	p new	Forecas	t Metrics	Miss	5	5	5	2	1	
-	timizes s ver False			10000				TT:4	Λ	Λ	Λ	7	0	
	her Hits	Alalii		115505				Hit CSI	4	4	4	/	8	
U		ecast I	Metrics of	on 2019 da	ta				31%	24%	44%	37%	50%	
												forecast met	nous	
	Creat	ting	g For	recast		etric	S	 Forecast Metrics outperformed Forecast Metrics vs. BAAQMD Forecaster 						
	actors								rease Hits by					
	e Gradie	ent		• Same D		at Hioh		 Decrease Misses by 1 count 						
 essure Gradient Same Day O₃ at High Elevation Station 						• Decrease False Alarms by 3 counts								
axim	um Temj	peratu	re	• First 8-h	nour O	3 at High	1	 Forecaster more skillful than regressions and NOAA CMAQ Model 						
	f Max Te	•		Elevatio				Mode	l					
	o Wind C 1s Day O	•	onent	Inversio		U								
eviol	is Day O	3		InversioHeight of	▲		n	Discussion						
				• Minimu			•	• Important to understand Microclimate in the Bay Area						
• 850-mb & 925-mb Temp						• Placement of the Thermal Trough								
								• Microscale flow across the Bay Area (CANSAC WRF)						
New Forecast Metrics								Maritime interface (Models too coarse to resolve)Inversion profile						
New	/ Forecas	st Met	rics → w	veak sea bi	reeze			• O_3 production vs O_3 transport						
2355	5Z SFO-	SAC (Sacrame	ento, CA) I	Pressu	re Gradi	ent ≤ 2.3	 Vertical mixing Horizontal transport from Central Valley 						
	(CSI = 0.	/	T 7°		D	-1		 Horizontal transport from Central Valley Misses vs. False Alarm 						
	mb (CSI			icca, NV)	Pressu	re Gradi	$ent \leq$	 False Alarms are much better than Misses 						
			<i>,</i>	ight of Inv	ersion	Bottom	< 200 m	 Varying forecaster personalities 						
12Z Oakland Sounding Height of Inversion Bottom ≤ 200 m (CSI = 0.530)								Changing forecast methods						
				95 F (CSI		·		 Human psychology How do popula response to Spare the Air Alerts 						
		-	o at Live	rmore ≥ 2 :	30 pm			 How do people response to Spare the Air Alerts Tightening National Ambient Air Quality Standards (NAAQS) 						
(CSI = 0.517)						 Inglitening National Amblent All Quality Standards (NAAQS) In 2015, NAAQS for O₃ was lowered to 70 ppb. 								
12Z Oakland Sounding 925-mb Westerly Wind Component $\leq 8 \text{ KT} (\text{CSI} = 0.507)$						• In 2008, NAAQS for O_3 was 75 ppb .								
				8-hour O_3	\geq 50 p	opb (CSI	[=	• In	1997, NAAQ	$QS \text{ for } O_3 \text{ was}$	as 80 ppb	•		
0.500)														
Skill score optimized when 6 out of 7 Metrics fulfilled							led	Acknowledgement						
			Base Per	rformance	e Nev	w Perfoi	rmance	—		•		eteorology &	- •	
Ratio			57%			% (↓18%		 Assurance Manager) and Ranyee Chiang (Director of Meteorology & Measurements) for their assistance in developing and reviewing this poster. O₃ data used in this study were retrieved from the EPA's Air 						
	ection	,	75%			% (↑16%								
Fals	se Detect	tion	8%		54%									
ess In			38%		58%	% (↑20%	b)	Quality System (AQS) and the Air District's Data Management						
	System													

spare

System.

- Quality System (AQS) and the All District's Data Management