THE LIFT PROJECT

ENGAGING UNDERGRADUATES IN K-12 STEM EDUCATION THROUGH HIGH-ALTITUDE BALLOONING

Philip Bergmaier¹, Trina Kilty¹, Shawna McBride¹ Kevin Kilty², Andrea Burrows³, and Kate Muir Welsh^{3,4}

¹WYOMING NASA SPACE GRANT CONSORTIUM ²DEPARTMENT OF MECHANICAL ENGINEERING, UNIVERSITY OF WYOMING ³SCHOOL OF TEACHER EDUCATION, UNIVERSITY OF WYOMING ⁴SOCIAL JUSTICE RESEARCH CENTER, UNIVERSITY OF WYOMING

Funded through NSF Grant DUE-1821566

WASA Space Grant Consortium

HIGH-ALTITUDE BALLOON PROGRAM

THE LIFT PROJECT

What is it? Three-year NSF-funded undergraduate science outreach program run by the WY NASA Space Grant at UW

Objective

Develop authentic K–12 STEM projects that incorporate the use of high-altitude weather balloons

Purpose

- Improve the science content of WY NASA Space Grant ballooning program
- Provide undergraduates at UW with real-world, hands-on experiences to help build skills & confidence in their chosen area of study

THE LIFT PROJECT

How it works

- 1) Student recruitment (sophomores/juniors; science, engineering, & education majors)
- 2) Organize into teams, assign a K–12 partner teacher
- 3) Develop projects from scratch (payloads, curriculum, etc.)
- 4) Deliver projects to K–12 classrooms (lessons/activities, balloon launch, & data analysis)

Educational approaches

- Collaboration
- Learning through teaching

RECAP OF YEAR 1 (2019)

Six undergraduate fellows (2 teams)

Projects

- Cosmic radiation (high school)
- Speed of sound (middle school)

Timeline

- Project development (Spring)
- Payload testing (late Spring / early Fall)
- Classroom visits & balloon launch (Oct/Nov)

COSMIC RADIATION PROJECT

Challenge

Students must design & build cosmic radiation shielding to protect a balloon payload

Scenario

"Space race" between two teams (budget, roles, etc.)

Payload

Arduino system w/ Geiger radiation sensor (β and γ)

Curriculum

- Basics of cosmic radiation
- Computer programming (Arduinos)
- Hands-on activities (building the shielding)

Highlight video: wyomingspacegrant.org/balloonvideo

SPEED OF SOUND PROJECT

Challenge

Build a payload to directly measure changes in the speed of sound throughout the atmosphere

Payload

Arduino system w/ ultrasonic distance sensor

Curriculum

- Basics of sound & waves
- Components of an experiment, develop hypotheses
- Hands-on activities (plotting data)

Speed of sound in an ideal gas:

 $v_{sound} \cong \sqrt{kRT}$ k = ratio of specific heats R = gas constant T = temperature (K)

WRAPPING UP

Summary

- New undergraduate science outreach program focused on highaltitude ballooning
- Goals...
 - 1) Provide UW students with opportunities to apply what they've learned to a real-world science/engineering project
 - 2) Improve the science content of WY Space Grant ballooning program

Looking forward to Year 2 (2020)

- Nine undergraduate fellows (three teams)
- Microbe project

Questions?

2019 LIFT Fellows

Jeff Bell Mary Block Garrett Burrows Josh Crips Jacob Plowman Tyra Relaford

2019 K–12 Partners

Newcastle High School UW Lab School Jennifer LaVanchy Andy Pannell Jim Stith Teresa Strube Theresa Williams

wyomingspacegrant.org/balloonprogram