

100th AMS Annual Meeting 34th Conference on Hydrology Boston, Massachusetts January 12 – 16, 2020

1. Motivation

- The Global Precipitation Measurement (GPM) mission Ground Validation (GV) supersite Precipitation Research Facility at NASA Wallops Flight Facility is equipped with the high-resolution S-band NASA Polarimetric (NPOL) radar and a 25 km² gauge network since 2013 for nearly continuous precipitation observations.
- A high-density gauge network was designed to match the GPM Dual-frequency Precipitation Radar (DPR) 25 km² nadir footprint.
- In order to accurately validate GPM DPR rainfall with GV radars, we must quantify the performance of several surface rainfall algorithms.
- > This study assesses the non-uniform beam filling (NUBF) problem by comparing NPOL-derived rain rates against 5-, 10-, and 15-minute averaged gauge estimates at three beam filling (BF) thresholds.
- > With the robust observational dataset, we also evaluated a drop-size distribution (DSD) based convective-stratiform rain classification technique.

Performance of S-band Ground-Based Radar Precipitation Rate Retrieval Algorithms over a Dense Gauge Array

Charanjit S. Pabla^{1,2}, David B. Wolff², David A. Marks^{1,2}, Stephanie M. Wingo^{3,4}, Jason L. Pippitt^{1,5}, Jianxin Wang^{1,5} Science Systems and Applications, Inc, Lanham, MD¹ NASA Goddard Space Flight Center - Wallops Flight Facility, Wallops Island, VA² University of Alabama Huntsville, Huntsville, AL³ NASA Marshall Space Flight Center, Huntsville, AL⁴ NASA Goddard Space Flight Center, Greenbelt, MD⁵

> Rainfall equations $R(Z_H)$, $R(K_{DP})$, $R(Z_H, Z_{DR})$, $R(Z_{DR}, K_{DP})$ based off simulated DSD

		5. Results
tistics (no filter)	Statistics As	s Function of Bir
orrelation Bias [%] MAE [mm/hr] Samples	RR	RC
10 m 15 m 5 m 10 m 15 m 5 m 10 m 15 m 5 m 10 m 15 m	NPOL RR 1.0 km/10 Min Averaged Gauge Mar - Oct, BF=10-50%	NPOL RC 1.0 km/10 Min Averaged Gauge Mar - Oct, BF=10-50
0.94 0.91 -4.4 0.53 7.4 4.0 4.2 5.0 4924 3912 3206		
0.93 0.90 -2.4 2.3 9.1 3.9 4.3 5.2 4924 3912 3206	RMSE 1.5. 071 2.0: 606 2.5: 212	RMS
lation Bias [%] MAE [mm/hr] Samples	50 3.0: 115 3.5: 111	
m 15 m 5 m 10 m 15 m 5 m 10 m 15 m 10 m 15 m		
75 0.71 -21.3 -21.3 3.6 3.5 3.5 4539 3556 2971 76 0.71 7.8 2.6 7.8 2.8 2.7 2.7 4539 3556 2971	5.0: 117 5.0: 151	
76 0.71 -7.8 -3.6 -7.8 3.8 3.7 3.7 4539 3556 2971 77 0.74 -5.7 - 0.15 -3.7 3.4 3.2 3.3 4539 3556 2971	Total 7.0:88 8.0:45 8.0:45	
on Bias [%] MAE [mm/hr] Samples	Z 9.0: 37 -50 10.0: 48	
15 m 5 m 10 m 15 m 5 m 10 m 15 m 5 m 10 m 15 m	-75 12.0: 49 15.0: 39	RC underestimates for low rates
0.83 -14.6 -11.8 -10.0 3.3 3.1 3.4 33349 30619 28136	RR underestimates for all rates	and overestimates for high rates
0.81 0.44 4.2 0.4 5.0 5.0 4.0 55349 50619 28136 0.84 1.6 5.0 7.2 2.9 2.8 3.1 33349 30619 28136	100 0 5 10 15 20 25 Rain Rate [mm hr^-1]	100 0 5 10 15 20 Rain Rate [mm hr^-1]
ms best with BF < 50% while RP does	100 NPOL RR 1.0 km/10 Min Averaged Gauge Mar - Oct, BF=50-90%	100 NPOL RC 1.0 km/10 Min Averaged Gauge Mar - Oct, BF=50-90
high BE thresholds	75 NMAE 75 BMSE 1.0: 683 1.5: 553	75 RMS
	50 2.0: 433 2.5: 250	50
istics (with filter)	3.0: 184 3.5: 150	
lation Bias [%] MAE [mm/br] Samples	4.0: 136 4.5: 89	
m 15 m 5 m 10 m 15 m 5 m 10 m 15 m 5 m 10 m 15 m		alized
99 0.98 -11.7 -3.0 5.7 1.9 1.7 1.9 4907 3875 3182		
99 0.98 -3.3 6.0 14.7 1.9 1.9 2.1 4961 3898 3170 99 0.98 -5.8 2.6 12.1 1.8 1.7 1.8 4733 3770 3083		-50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
m 15 m 5 m 10 m 15 m 5 m 10 m 15 m 5 m 10 m 15 m	RR underestimates for all rates	RC underestimates for all rates
32 0.90 -30.6 -27.7 -30.0 2.1 1.9 2.0 4201 3283 2734	Rain Rate [mm hr^-1]	Rain Rate [mm hr^-1]
31 0.90 -19.7 -16.4 -16.9 1.9 1.7 1.7 4545 3617 3058 92 0.90 -6.6 -0.84 -1.1 1.8 1.6 1.7 4441 3548 3013	NPOL RR 1.0 km/10 Min Averaged Gauge Mar - Oct, BF=90-100%	100 NPOL RC 1.0 km/10 Min Averaged Gauge Mar - Oct, BF=90-100
tion Bias [%] MAE [mm/br] Samples	75 NMAE 1.0: 3274 RMSE 1.5: 3886	75 NM/
15 m 5 m 10 m 15 m 5 m 10 m 15 m 5 m 10 m 15 m	50	50
1 0.92 -18.5 -16.8 -17.3 1.9 1.9 2.0 30039 27600 25302	3.0: 2134 3.5: 1665 4.0: 1326	
3 0.91 -9.2 -8.2 -9.3 1.8 1.8 1.9 31061 28575 26278 5 0 93 2 7 4 3 4 7 1 6 1 5 1 6 31067 28612 26351	4.0. 1330 4.5: 1112 5.0: 1638	
n increases with filtered results	N 0	Jalize
where the set we should be a set DE through a left	8.0: 725 9.0: 542	
ms best regardless of BF threshold	-50 10.0: 721 12.0: 717	
oving 5 th and 95 th percentile	-75 RR underestimates for all rates	-75 BC underestimates for all rates
e between radar and gauge	$-100 \frac{1}{0} \frac{1}{5} \frac{10}{10} \frac{15}{15} \frac{10}{20} \frac{11}{25}$ $Bain Bate [mm hr^{-11}]$	$-100 \frac{1}{0} \frac{1}{5} \frac{10}{15} \frac{11}{10} \frac{15}{10} \frac{20}{10}$

Pocomoke Gauge Network NPOL

-75.59 -75.58 -75.57 -75.56 -75.55 -75.54 Longitude (°) Flatiwood

Bringi et al. 2004 (hereafter RP)

- Strictly uses Z-R relation $Z = aR^{1.5}$
- > The multiplicative coefficient "a" changes continuously in space and time as DSD
- evolves DSD parameters estimated following Gorgucci et al. 2002 method

Wang et al. 2008 (hereafter RG)

12.0: 708

15.0: 635

RP bias near zero overall

Rain Rate [mm hr^-1]

- Gauge tips are converted to rain rate (bucket) size is 0.254 mm, time resolution is 1 second)
- Rates are derived using a cubic spline (CS) method
- Cubic polynomials are constructed between 2 tips in a given rain event Multiple tips and no rain tips are accounted

maintenance and quality control.