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vation

eostationary meteorological satellites have observed the earth for
40+ years.

— |nitial purpose was weather monitoring.: Qualitative use

— Wide coverage / frequent observation: useful for climate study

— Climate analysis requires high quality data.: Quantitative use
— High accuracy (~0.1K) / time stability (No artificial trend) / homogeneity

Goal of this study
— Re-calibration of Infrared and Water Vapor channels of imagers on
EUMETSAT and JMA historical geostationary satellites
— Common methods are applied to all historical satellites.
— Re-calibration of Visible (VIS) channel is the next challenge.
— Have already done for MFG/MVIRI.



GEO and LEO
ments, considering FOV size

FFOV of GEO
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Averaged GEO measurements
were compared with
collocated LEO measurements.
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(2) Applied “Spectral Band Adjustment
Factor (SBAF)” to LEO measurements

converted
LEQO9B> wmmy | [0GEO

Observed LEO Pseudo-GEO measurements from
measurements observed LEO measurements
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Steps for Re-calibration (2/2)

collocations (4) Computed re-calibration §
) . coefficients
mall time difference LEOGEO §
Small zenith angle difference  Each plot has measurements from |
Latitude < 35° uncertainty messurements | ~pOOBS
- in X and y axis.
Observed GEO measurements

To derive a certain day's coefficients, utilized collocated
data from the day and from within 2 days (D,=%=2days )

(5) Adjusted inter-bias of reference measurements
- Considered Metop-A/IASI as prime reference

- Estimated and filled difference between
measurements of prime reference and those of other reference (LEO)



ias between references by the Double leferenceethod

year 199x GEO@ year 200x GE%

GEO1 - LEO1 =-0.2K GEO1 - LEO2 =0.3K GEO2 - LEO2 =-0.6K GEO2 - LEO3 =0.5K

estimation | LEO1 - LEO?2 =O.SI(yation LEO2 - LEO3 =1.1K

estimation | LEO1 - LEO3 =1.6K
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age of Uncertainties

A long chain to prime reference
significantly increases uncertainty.
This also applies to Meteosat.

MTSAT-1R
MTSAT-2

B GMms-5
GOES-9
MTSAT-1R
MTSAT-2




d Water VVapor channels of historical GEO imagers were re-calibrated.
ne method was jointly developed by EUMETSAT and JMA.

— Reference: IASI, AIRS, HIRS Prime reference: Metop-A/IASI

— Old GEO imagers exhibit rather large biases (~3K) compared to new more
accurate instruments such as on MTSAT-1R and 2 as wells as MSG

— The recalibration exercise has significantly reduced such biases and makes
the data useful for climate studies

— In such studies one needs to be aware that the uncertainty of the recalibrated
radiance significantly increases the further away in time the measurement is
from the prime reference.

— Re-calibration coefficients are planned to be published.
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jonary (GEO) meteorological satellites have been observing

earth for more than 40 years. Initially, these satellites were
built for weather monitoring. In recent years, climate analysis
requires even higher-quality satellite measurements.

- In this study, measurements of historical low earth orbit (LEO)
meteorological satellites were used as references for re-calibration
of GEO satellite measurements. Inter-bias among reference
satellite measurements were also considered.

- Re-calibrated coefficients improved the qualities of historical GEO
satellite measurements.
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Pseudo-GEO measurements from Observed HIRS
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to Create SBAF (2/2)

max ' ,
BRRS“°C = ¢, + 2 ¢, AIRSPPS \k
IO S meauremens Kk, ooeried ARS M st
How to get ¢y & ¢y, Valid Channel Gap-channel
IASI data A  Multi-linear regression:
(10,000 footprints) — LY — 145650 = ¢ 4 yhmax o [agAIRS

(actual measurement) GEO min
| 1451 (where c,= 0 for AIRSZ®° has bad-flag)




unit (not Tbb unit) was used.
Inear regression was introduced for the adjustment.
SBAFs between two GEO instruments were also considered.
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0 the Prime Reference (Metop-A/IASI) ﬁ
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