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Problem Statement

Hurricanes are among the most destructive and costly natural phenomena. Seasonal
forecasts of tropical cyclones in the Atlantic can increase public preparedness and yield
insights into local and remote climate system influences. A limitation to existing
methodologies is use of regression techniques that limit the number of input features
and cannot represent nonlinear relationships between the predictors and the output.
Neural networks, as universal function approximaters, are largely insensitive the
number of input features and can use activations functions that allow for modelling of
nonlinear relationships in the data. This project explores the potential for deep learning
to provide a new tool for sub-seasonal to seasonal forecasting of tropical cyclone
activity in the Atlantic.

Background

Forecasting tropical storms (TS) on a sub-seasonal or seasonal time scale is
tractable due to two factors: (1) Tropical SSTs have a significant impact on TS
occurrence and intensity; (2) Tropical SSTs are predictable on a seasonal scale.
Warm/cold El Nifno/Southern Oscillation (ENSO) events are generally associated
with less/more TS activity in the Atlantic basin due primarily to their association
with increased/decreased wind shear. Two prominent groups engaged in
seasonal hurricane forecasting are National Oceanic and Atmospheric
Administration’s (NOAA) Climate Prediction Center (CPC) and the Colorado State
University (CSU) Tropical Meteorological Project, have achieved promising results
for two decades.

Key Terms

Named Storms(NS): Tropical cyclones with maximum 1-minute sustained 10 m
wind speeds between 39-73 mph

Hurricanes(H): Tropical cyclones with maximum 1-minute sustained 10 m wind
speeds of at least 74 mph

Major Hurricanes(MH): Tropical cyclones with maximum 1-minute sustained 10 m
wind speeds exceeding 111 mph, categories 3-5 on the Saffir-Simpson hurricane
scale

Challenges and Uncertainties

e 1944 is the first year for which complete and reliable tropical cyclone records are
considered to exist for the North Atlantic, therefore, empirical methods are
limited by the relatively low number of previous years of record.

e Modeling is complicated by well-documented uncertainties associated with the
target output hurricane dataset (HURDAT) maintained by the National Hurricane
Center (NHC).

e Empirical methods for seasonal hurricane prediction are vulnerable to significant
changes in the climate, due for example to interdecadal variability.

e Many combinations of named storms and hurricanes are possible with the same
given set of climate observations. For example, one cannot know with certainty
whether a given climate signal will be associated with several short-lived storms
or fewer longer-lived storms with greater intensity.
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AMO

Atlantic Multidecadal Oscillation (AMO) - A low frequency 55T
variability in the Atlantic Ocean.

increases.

When AMO is in positive phase, Atlatic tropical
storm occurance (especially major hurricanes)

Klotzbach and Gray
2008, Zhang and
Delworth 2006,

AMM

Atlantic Meridional Mode [AMM] - Spatial pattern defined by  |AMM is highly correlated to 55T, vertica

applying Maximum Covariance Analysis (MCA) to sea surface
temperature (S5T; left field) and the zonal and meridional
companents of the 10m wind field (right field) over the time
period 19503-2005 from the NCEP/MNCAR Reanalysis.

shear, low-level varticity, static stability and 5LP.
Postive AMM phase is associated with increased
Atlantic TC activity. In negative phase, cyclogenesis
tends to occur along U S, east coast near land in
less favorable 55T and shear environments.

| wind Goldenberg et al.
2001, Kossin and
Vimont 2007 .

NTAWND

Worthern tropical Africa 200-hPa zonal wind in m/s for region
between 5*N-15*N, 0°E-40°E.

Anomalous easterly flow at upper levels

easterly wave development into TCs and
persist through August-October, which r
cshear over the MDR.

northern tropical Africa is more favorable for

Over Klotzhach et al. 2019
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CUWIND

Caribbean 200-hPa zonal wind in m/s for region between 10°N-
20°N, B W-B5™W.

reduced shear and increased TC activity

Positive anomalies of 200-hPa zonal wind are
associated with enhanced shear and reduced TC
activity. Negative anomalies are associated with

Gray et al. 1994

CSUWND

Caribbean 1000-hPa zonal wind for region between 10°N-
17.5%N, 65" W-85"W.

Weaker-than-normal trade winds are as

tropical eastern Pacific (a La Nifia signa
|ower pressure in the Caribbean and tro

Atlantic TC activity.

with elevated Atlantic Warm Pool 55Ts, reduced
vertical shear in the region, higher pressure in the

Atlantic which are all associated with increased

Gray et al. 1994,
Klotzbach et al. 2019
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CMLSP

Central Atlantic mean sea level pressure (MSLP) for area
bhetween 20°N-40°N, 30"W-507W.

Atlantic is associated with reduced trad

activity. Warm anomalies in Apr-May te

strength promoting reduced upwelling, mixing and
enhanced ocean current flow from the south which
favors warm anomalies and enhanced Atlantic TC

persist throughout the peak hurricane season.

Low pressure during the month of May in the central |Klotzbach et al. 2019
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CSST

Caribbean 55T anomaly for region between 10°N-25°M, GO0FW-

850"W.

TC activity.

Warm 55T anomalies are associated with increased |Gray et al. 1994

DMI

Dipole Mode Index (DMI) - Gradient of the Indian Ocean Dipole
(100) which is the 55T gradient between the western equatorial
Indian Ocean (S0°E-70°E and 10°5-10°N) and the south eastern

equatorial Indian Ocean (30°E-110°E and 10°5-0°N).

Significant positive 10D events occur du
phases of ENS0 and are typically associ

west African monsoon circulation and E
convecton patterns.

reduced Atlantic hurricane activity by impacting the

ring all Bell et al. 2011
ated with

W50-related

EASST

Eastern Atlantic 55T defined for this project as the 55T
anomalies region between 17 5%-57.5M, 17.5"W-37.5W.

Positive 55T anomalies in the eastern At
during the April-May period are associa

winds, lower 5LP, ahove-normal 55T and

weaker-than-normal subtropical high, reduced
trade wind strength which are correlated with
weaker trade winds, weak upper tropospheric

Atlantic TC activity the following August-October.

lantic Klotzbach et al. 2019
ted with a

higher

NINO3

55T anomaly from the HadI55T data set based on climatological
average from 1981-2010. Region is 5°N-5%5, 150°W-30°W.

ENSO is the dominant contributor to var

NINO34H

55T anomaly from the HadIS5T data set based on climatological
average from 1981-2010. Region is 5°N-5%5, 170°W-120%W.

iance in Bell and Chelliah

200-hPa zonal winds across the MDR. Moderate to  |2006, Goldenbert et
strong warm ENSO is associated with reduced TC
activity due to stronger than normal westerly winds_ |1984

al. 2001, Gray et al.

MDRSST

Atlantic hurricane main development region (MDR] 55T
anomaly from Kaplan 55T W2 in the region between 12 5%
225N, 30°W-87.57W.

Atlantic tropical storm activity is highly
to 55T conditions in the MDR.

correlated |Goldenberg et al.
2001, Zhang and
Delworth 2006.

NASST

Maorth Atlantic 55T anomaly for region S*N-177N, 10"W-807W .

TC activity.

Warm 55T anomalies are associated with increased

NESSTA

MWortheast Subtropical Atlantic 55T anomaly from the Kaplan
55T V2 data set based on climatological average from 1981~
2010. Region iz 22.5°M-42.5%5, 15W-35%W.

Atlantic are associated with reduced tra
strength are associated with less surfac

This results in warmer tropical stlantic
the August-October period.

Anomalously warm 55Ts in the subtropical North

evaporative cooling and less mixing and upwelling.

Klotzbach et al. 2019
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NAO

Hurrel Morth Atlantic Oscillation (NAQ) index. The principal
companent (PC)-based indices of the Morth Atlantic Oscillation
(NAQ) are the time series of the leading Empirical Orthogonal
Function (ECF) of SLP anomalies over the Atlantic, 20%-80°N,

S0"W-40°E.

trade winds.

Atlantic Hurricanes. Positon of H farther south
tends to focus storms into the Gulf of Mexico. The
position of the H is also linked to strength of the

By controlling the positon of the Azores High, NAD  |Elsner and lagger
influences the general storm paths for major W 2006

QBO

Cuasi-biennial oscillation (QBO). The monthly and zonal mean
equataorial zonal wind at 30-hPa.

Suppressed TC conditions tend to occur

and Sobel (2010) found that the QB0 wa
correlated to Atlantic TCs after 1983.

phases, enhanced during west phases. Camango

in east Gray et al. 1994,
Camango and Sobel
s notwell (2010

SPUWIND

South Central Tropical Pacific 200-hPa zonal wind for region
between 0°5-15°5, 150°E-120°W.

south-central tropical Pacific are typica
associated with ongoing La Nina conditi

reduced chance to transition to El Nino.
values are associated with favorahle At

hurricane canditions.

stronger Walker Circulation. Anomalously strong
upper-level westerly winds would indicate a

Anomalous upper-level westerly zonal winds in the |Klotzbach et al.

Iy 2019.
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Tropical Cyclone Output

Tropical cyclone counts used as the deep learning model predictand for 1950-2018 are from
the hurricane dataset (HURDAT) maintained by NOAA’s National Hurricane Center (NHC).

Climatology (1981-2010)

Season Mean Range of Named Mean Range of Mean Range of Major
Type storms Hurricanes Hurricanes
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Categorical Forecast BINS

Storm Type 1951-2018 Occurences
NS H MH NS H MH

BIN 1 0-8 0-4 0-1 20 22 19
BIN 2 9-15 5-8 2-3 38 33 31
BIN 3 =16 =9 =4 9 11 18
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Network Hyperparameter Search

We employ a genetic algorithm
(GA) to tune the hyperparameters
of a fully connected neural
network (NN) for seasonal
hurricane forecasting.
Hyperparameters set by the
genetic algorithm include the
number and width of hidden
layers, the learning rate, p and 3,
the dropout ratio, and the
activation function. The GA also
optimizes the number of months
of data for each input. Parameters
used for the GA include a
population size of 50, and 20
generations.

Parameters of Best
Network

Adam Optimization
Learning Rate: 0.0011
B 0.9024

B, 0.9942

Dropout: 21%

Activation: softplus
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Results

This work demonstrates the potential of neural
networks to integrate information from 17
predictors to make a seasonal forecast on June 15 of
named storms, hurricanes, and major hurricanes in
the Atlantic.
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MH Prediction and Misclassification Distributions
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Mean loss (left) and accuracy (right) GA generation 20 NNs

Best NN (%)
Pre-GA Mean NN (%)
Post-GA Mean NN (%)

62.4 69.9
47.0 44.2 52.4

56.9 48.1 61.8

Neural Network Classification Performance

55.9
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