

Analyzing the Accuracy of the National Weather Service Central Region Tornado Events in Storm Data and Developing Techniques for Database Improvements

Introduction

- The NWS Central Region Tornado Warning Improvement Project (TWIP) Team examined unwarned tornado events from 2014-2015
- The Objective Use the results to identify any training needs, minimizing unwarned events in the future and improving warning operations
- During the review, numerous errors were discovered
- As a follow up, all of the NWS Central Region tornadoes in Storm Data were quality controlled.

Fig 1A: Example of Storm Data tornado entry one hour off. Fig 1B: Same example as Fig 1A but at the correct time. These errors often result in an "unwarned" tornado and a tornado warning that is not verified, resulting in negative impacts to NWS verification statistics.

Storm Data Entry Best Practices

Rod Donavon and Craig Cogil NOAA/NWS Des Moines, IA

NWS Central Region Tornado Warning Improvement Project

Time/Placement Mismatch Errors

2014-15 Unwarned Tornado Storm Data Review

- 461 events quality controlled with 65 total errors identified or 14% 29 Tornadoes (6.3%) were actually WARNED! Impacts POD, FAR and CSI
- 36 more Tornadoes had incorrect time and/or placement errors.
- Time errors were often 1-2 hrs. Likely due to Storm Data Entered in
- LST. Option for UTC soon.
- Numerous events with a TDS prior to Storm Data start time. At times, TDSs noted with no Storm Data Entry

Storm Data Placement Errors

Fig 2A: Tornado placed outside of the warning polygon, therefore becomes a missed event. Fig 2B – Tornado placement is within a polygon but lead time is lost since it was ongoing further northwest within the first polygon. This would extending warning lead time.

Radar at Storm Data End Time Fig 3A

ig 3B

Fig 3A: Tornado placement is correct but the end time is 7 minutes too early, reducing lead time. Fig 3B – Correct Tornado end time which will add additional lead time for the event

Team/Group Concept

- Vetting
 - Team work can help determine questionable events ensure data quality
- Workload Allocation
 - Have one team member dedicated to quality control the tornado data, while other team members quality control other severe weather reports.
- Accountability
- Team members hold each other accountable and should be open to questions regarding Storm Data entries.

2018 NWS CR Tornado Storm Data Review

- Option for UTC soon.
- 5-8 miles at times.
- with no Storm Data Entry.

TDS Prior to Start Time

that are too short.

Use All Available Tools

508 events quality controlled with 73 total errors identified or 14% 9 unwarned tornadoes were actually warned

2 of 9 NWS CR EF-3 tornadoes contained errors.

Time errors were often 1 hr. Likely due to Storm Data entered in LST.

Placement errors using spotter location. Results in tornado placement off

28 events with a TDS prior to Storm Data start time. A few TDSs noted

time in Storm Data. Both examples result in tornado tracks

Other Storm Data Entry Errors

Fig 5A: Tornado track gap example at political borders. Fig 5B: Storm motion errors. These are most noticeable in Storm Date when tornadoes cover too large of a distance in a short period of time, yielding unrealistic storm motions.