

A New Convective Trigger for Better Capturing the Diurnal Cycle of Precipitation in Weather and Climate Models: Observational Evidence and Modeling Results

Shaocheng Xie¹, Yi-Chi Wang², Wuyin Lin³, Hsi-Yen Ma¹, Qi Tang¹, Shuaiqi Tang¹, Xue Zheng¹, Chris Golaz¹, Guang Zhang⁴, and Minghua Zhang⁵

Errors in Modeling Diurnal Cycle of Precipitation

Common errors

- Rainfall occurs too early after sunrise and "too frequent, too weak"
- Fail to capture the nocturnal peak over the central Great Plains
- No eastward propagation of MCSs from the Rocky Mountain to the central Great Plains • No significant improvement with increasing
- model resolution

Errors are larger over land than ocean

Deficiencies in convective triggers

- Unrealistically strong coupling of convection to surface heating
- Lack of convection inhibition
- Lack of additional large-scale dynamic & thermodynamic controls (e.g., tropospheric moisture, low-level convergence)
- Roles of cold pool in convection initiation
- Elevated convection is not considered

often over land during warm season

Two Key Areas to Improve

- 1. To prevent convection from being triggered too frequently
- 2. To capture elevated nocturnal convection, which occurs from moist conditionally unstable layers located above the boundary layer

Proposed Solutions

• The dynamic CAPE generation rate (**dCAPE**) introduced by Xie and Zhang (2000) to control the onset of deep convection:

 $DCAPE = [CAPE(T^*, q^*) - CAPE(T, q)]/\Delta t,$

Where $T^* = T + (\partial T/\partial t)_{adv} * \Delta t$; and $q^* = q + (\partial q/\partial t)_{adv} * \Delta t$

• Unrestricted Launch Level (**ULL**) introduced by Wang et al. (2015) to allow air parcel launching above PBL to capture elevated convection

New Trigger: (CAPE>0 & dCAPE>0) + ULL

Model and Experiment Design

11 year AMIP simulations with the newly developed US DOE Energy, Exascale, and Earth System Model (E3SM) Atmosphere Model Version 1 (**EAMv1**); 2–11 year simulations are analyzed. Model resolutions are 1^o and 72 levels

Case	Description	Convective Trigger
CNTL	Default low-resolution (1 ⁰) EAMv1 (Rasch et al. 2019)	CAPE > 70 J/kg
dCAPE+ULL	EAMv1 with the proposed new convective trigger	 CAPE > 0 & dCAPE > 0 Allow unrestricted launch let
dCAPE	EAMv1 with dCAPE trigger only	CAPE > 0 & dCAPE>0
ULL	EAMv1 with ULL	Same as CNTL, but allow unreal (ULL)

This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. IM release: LLNL-POST-790801

¹Lawrence Livermore National Laboratory, Livermore, CA, ² Research Center for Environmental Change, Academia Sinica, Taipei, Taiwan, ³Brookheaven National Laboratory, Upton, NY, ⁴University of California at San Diego, CA, and ⁵Stony Brook University, NY

Diurnal Cycle of Precipitation

Science and Technology, Taiwan under Grant no. MOST 105-2119-M-001-018 and 107-2111-M-001-010. GJZ was supported by DOE's ESM program under DE-SC0019373.

Overall impact on mean state is

Slight improvements over equatorial and subtropical Pacific and Atlantic, surrounding oceans, South America A slight degradation is seen in the

northern ITCZ in the eastern Pacific

over the subtropical regions with the use of the **dCAPE** trigger.

GPCP-1DD — dCAPE

• EAMv1 shows "too frequent, too weak" for EAMv1 does a decent job for the moderateto-heavy precip in frequency, but largely underestimates the intensity in tropics • The new trigger reduces the frequency of

light-to-moderate precip and increases the intensity of moderate-to-heavy precipitation

> Model starts to show the "Eastward Propagation" with the new trigger

