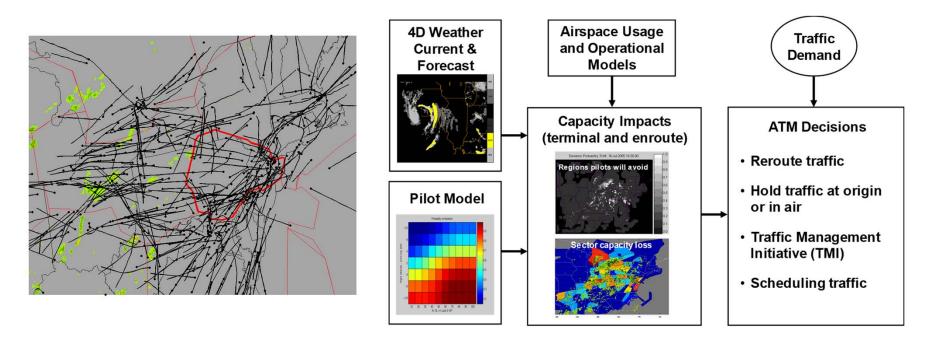
A Historical Perspective on the Integration of Weather Information into Air Traffic Management Decision Support Tools

Jim Evans

14 January 2020

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.


This material is based upon work supported by the Federal Aviation Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Federal Aviation Administration.

© 2020 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

- Improving the decision support to achieve safe and efficient aviation operations under adverse weather conditions has been a major objective for decades
- Explicit consideration of air traffic management (ATM) in decision support design and use is critical for improving operational outcomes

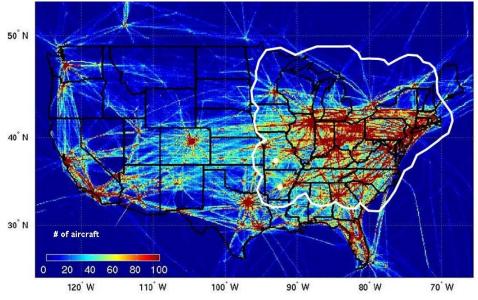
Operationally Tested Weather-ATM Systems 1980-2019

		Convection	Final approach visibility	Winds on wake vortices	Final approach winds
Information	Separate weather display	ITWS, CIWS, WARP			
	Weather & traffic on same display	ARTS, CIWS, WARP			
Weather	Weather translated into ATC impacts	√ CWAM	√ MSFS		
5	Weather translated into ATM decisions	RAPT/IDRP	GPSM/MSFS	√ WTMD	TBFM

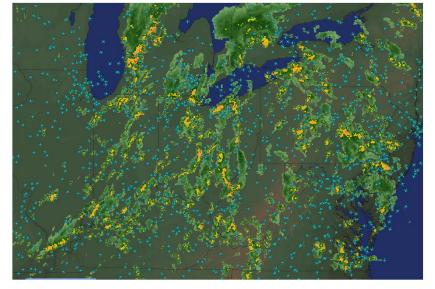
Weather Impact

ATM-weather systems have been developed with a variety of different options for conveying weather information and impacts

ARTS-Automated Radar Terminal System CIWS- Corridor Integrated Weather System CWAM Convective Weather Avoidance Model ITWS Integrated Terminal Weather System GPSM GDP Parameters Selection Model IDRP-Integrated Departure Route Planning MSFS – Marine Stratus Forecast System RAPT-Route Availability Planning Tool TBFM-Time Based Flow Management WARP-Weather and Radar Processor


Outline

- 1. Examples of weather/ATM decision support systems
 - Successful (after six years of prototype operational use): Corridor Integrated Weather System (CIWS)
 - Mixed success: Route Availability Planning Tool (RAPT)
- 2. How have various ATM-weather integration options worked out in practice?
- 3. Thoughts on how to improve the operational effectiveness of ATM-weather integration going forward



Motivation for Corridor Integrated Weather System (CIWS)

Congestion + Convection = Trouble

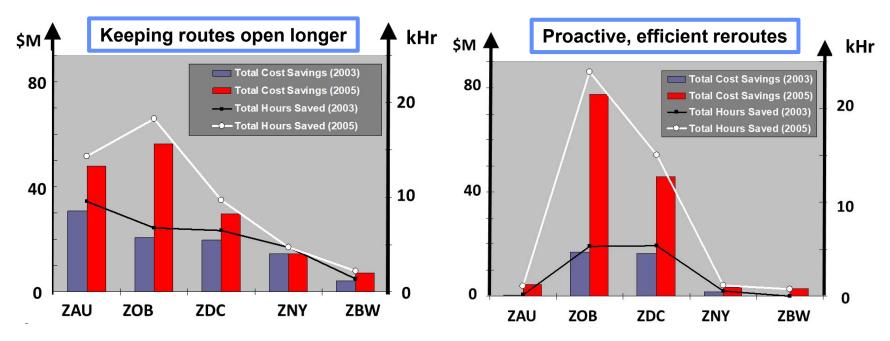
Density of traffic for a 24 hour period in Sept. 2002 with CIWS 2005 coverage region

Convective weather and aircraft on a day in summer 2005

CIWS provides 0-2 hour forecast of Vertically Integrated Liquid (VIL), Echo Tops (ET) & precipitation phase

Understanding of Weather-ATM Issues at Start of CIWS Development

- What was understood from Integrated Terminal Weather System
 (ITWS) operations
 - Importance of interacting with operational users
 - Current/forecast precipitation products
 - Initial understanding of pilot storm avoidance decision making
 - Echo tops in relationship to flight altitude a key factor
- What was <u>not</u> understood for en route congested airspace ATM
 - Frequency of relatively low topped high VIL storms
 - ATM decision making in an ARTCC
 - Key users
 - Communication/collaboration
 - Impact of how operational personnel make ATM decisions on
 - Training
 - Data for post event ATM decision analyses

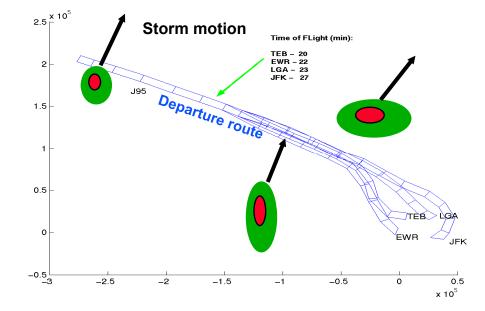


2005 CIWS Benefits Assessment Insights

- Approach: Simultaneous intensive observations during widespread events followed by facility-specific quantitative analyses
 - Interaction Benefits (
 - Importance of identifying and supporting key decision makers
- Area supervisor experiment at ZOB 2003 and 2005

Products

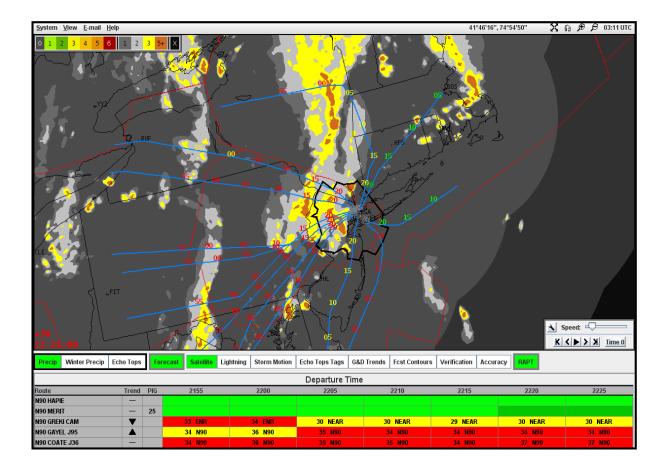
- ZDC had area displays both years; ZOB did not in 2003, but did in 2005


Outline

- 1. Examples of weather/ATM decision support systems
 - Successful (after six years of prototype operational use): Corridor Integrated Weather System (CIWS)
 - Mixed success: Route Availability Planning Tool (RAPT)
- 2. How have various ATM-weather integration options worked out in practice?
- 3. Thoughts on how to improve the operational effectiveness of ATM-weather integration going forward

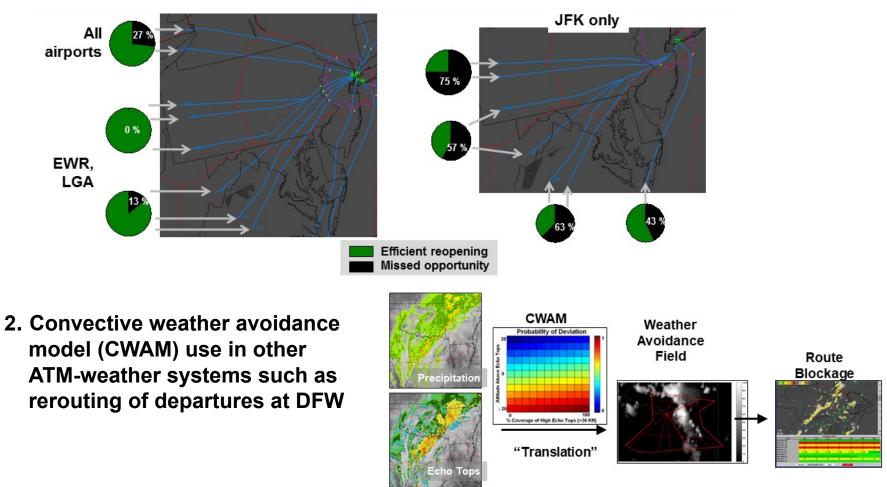
Route Availability Planning Tool (RAPT) at New York

 Route structures and traffic density at NY make rerouting very difficult – need to focus on keeping departure routes open

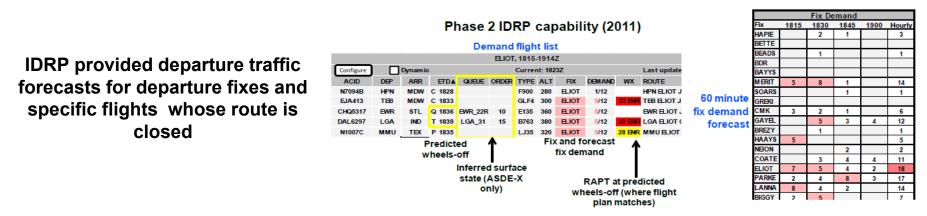


Key operational question addressed by RAPT: If at this time an aircraft is released on this route, will it encounter hazardous weather?

- ATM challenge: it was difficult to assess departure route availability
 - Need to account for <u>both</u> aircraft trajectories <u>and</u> storm movement
 - Many facilities and ATC areas involved in departure route decisions: manual assessment by many different people takes too long


Route Availability Planning Tool (RAPT)

- Funded initially by PA NY/NJ
- Used operationally starting in August 2002
- Uses CIWS forecasts (VIL and echo tops)
- Helps get departures out of airports during SWAP
- Annual delay savings ≈ \$ 17 M (in 2009)
- Operational users
 - EWR, LGA, JFK, TEB
 - NY TRACON
 - ZNY, ZDC, ZOB
 - Airlines


1. CIWS-like observations to refine ATM model combined with training focused on observed usage more than doubled operational benefits

Integrated Departure Route Planning (IDRP)-RAPT Testing 2010-2011

• Objective: Quickly find flights to use a route that is reopening and, reroute flights whose route will be closed for a lengthy period

Results of 2011 RAPT/IDRP evaluation (DeLaura, et. al., 2012)

- 1. Forecasting flight availability for departures and, forecasting fix demand provided difficult
- 2. Routes with no weather blockage ("green") were at times unusable due to arrival deviations into departure airspace
- 3. Departures operated on "red" RAPT routes because ATC had merged adjacent departure routes to obtain more space for deviations around cells

In retrospect:

- 1. Test period (1 year) was far too short given the complex ATM situation
- 2. RAPT could not be the only source of information on route availability

- 1. Examples of weather/ATM decision support systems
 - Successful (after six years of prototype operational use): Corridor Integrated Weather System (CIWS)
 - Mixed success: Route Availability Planning Tool (RAPT)
- 2. How have various ATM-weather integration options worked out in practice?
 - 3. Thoughts on how to improve the operational effectiveness of ATM-weather integration going forward

How has ATM-Weather Integration Worked Out in Practice?

- Some successes (TDWR, ITWS, CIWS, CWAM)
- Many current problems with the advanced weather-ATM systems
 - Production RAPT installed at NY, ORD, PHL, DC but current operational benefits unclear
 - SFO marine stratus dissipation decision support is facing many challenges to forecast system operation. The GDP planning backend was turned off in 2013 due to lack of funding.
 - SFO wake vortex departure system turned off due to multiple issues (procedure reviews, RAP access for "safety critical" operations)
- Institutional (NWS, FAA) problems dealing with "special NAS cases" such as SFO and New York: R & D responsibility, training that considers operational usage, updating system (with user engagement) as weather and ATM changes occur
- Developing and validating ATM models for airspace usage in convective weather has proven a difficult challenge

Why the Differences in Current Operational Effectiveness of RAPT versus CIWS

Factor	CIWS	RAPT Prototypes	RAPT Production
Tailored to Generic Decision Making	Yes	NA	NA
Develop ATM model for specific facility decisions	Νο	NY, ORD-partial	NY, ORD-partial PHL, PCT-no
Training in use of display	Yes	Yes	Yes
Annual facility specific scenario training	Yes	Yes	No
Full complement of product reliability information	Yes	Yes	No
Post event online archive	Yes	Yes	No
Operational use metrics to drive training and refinement	Only initially	Yes	No
Airline real time access	Yes	Yes	Limited
Airline access to post event archive and, annual training	Yes	Yes	No

- 1. Examples of weather/ATM decision support systems
 - Successful (after six years of prototype operational use): Corridor Integrated Weather System (CIWS)
 - Mixed success: Route Availability Planning Tool (RAPT)
- 2. How have various ATM-weather integration options worked out in practice?
- 3. Thoughts on how to improve the operational effectiveness of ATM-weather integration going forward

How Might ATM-Weather be in a Better Place by 2050?

- Improving coupling to the key operational decision makers
 - Highly successful developments had close coupling to the operational decision makers over several years using prototypes
 - Arriving at adequate ATM models critical for highly integrated systems
- Handling weather forecast uncertainty and, complicated (e.g., AI) algorithms
 - A major problem for convective weather ATM for the foreseeable future
 - The success of CWSU located within the TMU at ZTL in helping ATC make ATM decisions suggests providing a tailored parallel weather/ATM information stream to CWSU staff located in the TMU area
- Training driven by post event assessment of operational decisions
 - FAA PERTI (Plan, Execute, Review, Train, Improve) program
- Ongoing assessment and updating of the decision support systems
- Improve management for ATM-weather decision systems of R & D, ongoing maintenance/refinement and operational usage driven training