
For this study we use the NCAR extRemes package 
(Gilleland and Katz, 2014) for R to calculate 
statistically-derived return intervals from extreme 
maximum precipitation amounts.  Using 30-year 
period intervals and a 95% percentile daily rainfall 
threshold, a Generalized Pareto (GP) distribution is 
applied to each aggregated HUC or CD polygon. 

GP extreme event analyses were applied to 30-year 
evaluation periods for the end of the CMIP5 
Historical (1976-2005), mid-21st Century (2036-
2065), and late-21st Century (2070-2099) Periods. 

Resulting extreme analyses return periods were 
collected archived by, evaluation period, ensemble 
member and RCP Pathway.  For a single unitary 
value per map element and period/pathway these 
resulting periods were aggregated by median daily 
rainfall amount for a given return period. 
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CMIP 5 LOCA Ensemble Members

Climate change, as it progresses through the 
21st century, is expected to affect the amount and 
frequency of rainfall events. These changes in peak 
rainfall return frequencies as well as periods 
between wetting rains will impact infrastructure, 
sediment loading, wildland fire, flood plain extent, 
and some elements of disaster planning.

Detectability of rainfall extremes is challenging due 
to the discontinuous nature of rainfall and non-
local effects (e.g. flooding) whereby extreme rain in 
one location can impact hydrologic units 
downstream from the event. Likewise, single future 
scenarios due to isolated rainfall events cannot 
effectively capture the potential of extreme events 
for a given future time interval, especially under 
nonstationary climate change.

Our approach is to use CMIP5 LOCA ensembles 
(Pierce et al., 2014) regionally localized and 
aggregated by hydrologic units or climate zone 
divisions to assess changes in extreme rainfall 
event returns and the implication of those 
changes. 

Only USGS-CIDA-archived CMIP5 ensembles that 
included daily maximum and minimum 
temperatures, and daily precipitation were used in 
this study.  The ensembles used are listed here.

Because of the the spotty nature of precipitation 
(especially convective rainfall) and the impact of a 
local, or sometimes remote, event on flood events 
and assessments of flood events, daily rainfall 
fields were aggregated to USGS HUC-08 watershed 
polygons for the Missouri Basin to the maximum 
daily rainfall value within a given polygon.  

Alternatively, we experimented with Central US 
NCEI Climate Divisions to study the sensitivity of 
aggregation scale and theme.  

Extreme Event Analysis

Mid- and Late-century projections of 
daily, 20-year return maximum daily 
precipitation under low (RCP 4.5) and 
high (RCP 8.5) emissions scenarios.  
Historical baseline period is 1976-2005
Sources: K. Kunkel CICS, NOAA-NCEI, 
CICS-NC, NCA4 (Easterling et al., 2017)

Creating Comparative Return Maps
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Mapping Return Periods by Time

Distributions of return event interval 
comparisons for mid-21st century vs 
contemporary periods (using a 50-yr
sampling period) for three HUC-08-
scale catchments in the Missouri 
River Basin.  Also shown is approach 
by which historical return events are 
translated into future climate 
scenarios (Elm Catchment only).
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Return Interval Maps
Mapping by HUC-08 Catchments Mapping by NCEI Climate Divisions
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Mid-century projections of 
daily ETCCDI SPII changes 
under low (RCP 4.5) and high 
(RCP 8.5) emissions scenarios.  
Historical baseline period is 
1976-2005.  
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