Early Adoption of GOES-R Baseline Products in NWS/NESDIS Operations

Lou Cantrell, Sabrina Taijeron, and Aaron Pratt NOAA/NESDIS/TPIO Contract Support for NOSIA Refresh David Helms NOAA/NESDIS/TPIO

NOAA Observing System Integrated Analysis (NOSIA) Refresh

- This year we began surveying NWS and NESDIS business units to update NOSIA (2013-15).
- NOSIA is a diagnostic graph that links NOAA's portfolio of observing systems, including the GOES-R Program, through a highly interconnected network of products and services through a large number of mission outcomes grouped by "Mission Service Area". We call it the "NOAA Value Tree"
- Graph comprises >25K nodes, >125K edges
- Although work is ongoing, this is to report on our initial findings, specifically on the GOES ABI imagery relevance to specific operations and performance.

GOES-R Series ABI/GLM are Innovations

Objective: Understand preferences for and performance of

- Innovative ABI Products throughout the now-cast to warning decision-making time frame.
- Improved refresh rate
- Visual identification of specific phenomena relevant to mission support products
- Lightning information from GLM

This is where human-interpretable imagery flows into operational decision-making.

GOES-R Series Imagery Products

- More than a million possible level 1b and level 2 imagery products from GOES-R Series Advanced Baseline Imager (ABI) to support operations.
- NWS/MDL/AWIPS-II and N-AWIPS serve a predefined list of dozens of these products for Operations.
- STAR and CIMMS Development and CIRA Training have helped GOES-R Program Office Inculcate Benefits and Uses before Launch took place.
- NOSIA Refresh Surveyed operational business units of the NWS & NESDIS on 65 of these products to identify their operations-specific channel preferences and performance satisfaction estimates.

Channels

n = 16

- Channel Differences n(n-1)
- RGB's of Channels
 n(n²-1)
- RGB's of Channel Differences

 $[n+n(n-1)]n(n^2-1)$

 Multiply that by Tailored Gamma Distributions of the brightness values = hundreds of millions of base imagery products.

Channel

Channel-01 (0.47 um) Blue Band Channel-02 (0.64 um) Red Band Channel-03 (0.86 um) Veggie Band Channel-04 (1.37 um) Cirrus Band Channel-05 (1.61 um) Snow/Ice Band Channel-06 (2.24 um) Cloud Particle Size Band Channel-07 (3.90 um) Shortwave Window Band Channel-08 (6.19 um) Upper-Level Tropospheric Water Vapor Band Channel-09 (6.93 um) "Mid-Level Tropospheric Water Vapor" Band Channel-10 (7.34 um) "Lower-level Water Channel-11 (8.44 um) Cloud-Top Phase Band Channel-12 (9.61 um) Ozone Band Channel-13 (10.33 um) Clean IR Longwave Channel-14 (11.21 um) IR Longwave Window Band Channel-15 (12.29 um) Dirty Longwave Window Band Channel-16 (13.28 um) CO2 longwave infrared

Specialized Products

Aerosol Optical Depth Product Clear Sky Masks Product Cloud Base Height Product Cloud Optical Depth Product Cloud Particle Size Distribution Product Cloud Top Height Product Cloud Top Pressure Product Cloud Top Temperature Product Derived Motion Winds Product **Derived Stability Indices Product** Flight Icing Threat Fog (Blended) Product Land Surface Temperature Product Lightning Detection: Events, Groups & Flashes Product Precipitation (Type/Rate) Product Sea Surface Temperature (Skin) Product Temperature / Moisture Vertical Profiles Product **Total Precipitable Water Product**

AWIPS GOES Imagery Products Surveyed in NOSIA Refresh

Channel Differences

Vegetation Indices GOES R-U Channel Difference (0.64 - 0.86) Split Window Difference (SWD) GOES R-U Channel Difference (10.33 - 12.29) Night Fog Difference GOES R-U Channel Difference (10.33 - 3.9) Split Cloud Phase GOES R-U Channel Difference (11.21 - 8.44) Fire/Hot Spot Characterization GOES R-U Channel Difference (2.24 - 1.61) Fog GOES R-U Channel Difference (3.9 - 10.33) Cloud and Moisture Imagery (CMIP) GOES R-U Channel Difference (6.19 - 0.64) Split Ozone Profile GOES R-U Channel Difference (9.61 - 10.33) Split Snow GOES R-U Channel Difference (1.6 - 0.64)

RGB's of Channel Differences

Air Mass RGB (6.19 - 7.34, 9.61 - 10.33, 6.19) Ash RGB (12.29 - 10.33, 11.21 - 8.44, 10.33) CIMSS Natural Color RGB (0.64, 0.86, 0.47) Day Cloud Convection RGB (0.64, 0.64, 10.33) Day Cloud Phase Distinction RGB (10.33, 0.64, 1.61) Day Convection RGB (6.19 - 7.34, 3.9 - 10.33, 1.61 - 0.64) Day Land Cloud RGB (1.61, 0.86, 0.64) Day Land Cloud Fires RGB (2.24, 0.86, 0.64) Day Ocean Cloud Convection RGB (0.86, 0.86, 10.33) Day Snow-Fog RGB (0.86, 1.61, 3.9 - 10.33) Daytime Composite #1 RGB (0.64, 1.61, 11.21) Daytime Composite #5 RGB (0.64, 0.86, 0.64) Differential Water Vapor RGB (7.34 - 6.19, 7.34, 6.19) Dust RGB (12.29 - 10.33, 11.21 - 8.44, 10.33) Fire Temperature RGB (3.9, 2.24, 1.61) Icing RGB (0.64, 0.86, 1.61) Nighttime Microphysics RGB (3.9, 10.35, 12.3) Nighttime Microphysics RGB (12.29 - 10.33, 10.33 - 3.9, 10.33) Simple Water Vapor RGB (10.33, 6.19, 7.34) SO2 RGB (6.93 - 7.34, 10.33 - 8.44, 10.33)

Who we've spoken to so far...

Red-Green-Blue (RGB) Phenomenological Queuing

HI – Human Intelligence:

Immediate Visual Interpretation as input to Operational Service Decision-Making

Business Unit Name	Product Name				
NWS Alaska Region Arctic Testbed & Proving Ground	WFO National Digital Forecast Database (NDFD)				
	Airmen's Meteorological Information (AIRMET) Ceiling and Visibility				
	Aviation Area Forecast				
Aviation Weather Center	Significant Meteorological Information (SIGMET) Convection				
Aviation weather center	Significant Meteorological Information (SIGMET) Dust and Sand				
	Significant Meteorological Information (SIGMET) Icing				
	Significant Meteorological Information (SIGMET) Turbulence				
	Antarctic Iceberg Database				
National Ico Contor	Arctic Shipping Routes				
National ice Center	Weekly (Hemispheric) Arctic Sea Ice Analysis				
	Weekly (Hemispheric) Antarctic Sea Ice Analysis				
Alaska Aviation Weather Unit	Significant Meteorological Information (SIGMET) Volcanic Ash				
Satallita Applications Pranch	Manual Dvorak Intensity Classifications and Positions				
Satellite Applications Branch	Satellite Precipitation Guidance Message Product (SPENES)				
Weather Forecast Office Bismark, ND	Severe Thunderstorm Warning and Severe Weather Statement				
Weather Forecast Office Buffalo, NY	Winter Storm Warning				
Weather Forecast Office Huntsville, AL	Flash Flood Warning and Flash Flood Statement				
Weather Forecast Office Oklahoma City, OK	WFO National Digital Forecast Database (NDFD)				
	Fire Weather Watch				
	Hot Spot Notifications				
Weather Forecast Office San Diego, CA	Red Flag Warning				
	Site Specific Fire Weather Spot Forecast				
	Terminal Aerodrome Forecast				

Who we're going to visit ...

Site	Name	Tentative Date
NSSL	OAR National Severe Storms Laboratory	Winter 2020
NCEP-SPC	NWS Storm Prediction Center	Winter 2020
WFO-OUN	NWS Weather Forecast Office, Oklahoma City, OK (Norman)	Winter 2020
NCEP-NHC	NWS National Hurricane Center	Spring 2020
NCEP-OPC	NWS Ocean Prediction Center	Spring 2020
NCEP-WPC	NWS Weather Prediction Center	Spring 2020
ESRL	OAR Earth System Research Laboratory	Spring 2020
NCEP-SWPC	NWS Space Weather Prediction Center	Spring 2020
WFO-BOU	NWS Weather Forecast Office, Denver/Boulder, CO	Spring 2020
NCEI-CCOG	NESDIS National Centers for Environmental Information Center for Coasts, Oceans, and Geophysics	Spring/Summer 2020
NCEI-CWC	NESDIS Center for Weather and Climate	Spring/Summer 2021
NCEP-EMC	NWS Environmental Modeling Center	Summer 2020
NWC	NWS National Water Center	Summer 2020
OSPO-SPB	NESDIS Office of Satellite and Product Operations Satellite Products Branch	Summer 2020

Volcanic Ash Advisorie	s 85		Always areas for improvement				
Environmental Atmosphere Dispersion Model	60	75	Could meet user needs without these data, but would have fairly sign	ificant degr	radation		
Ash3d Volcanic Ash Dispersion Model USGS	40		lot as user friendly as HySPLIT				
Hybrid Single Particle Lagrangian Integrated Trajectory	60		More interactive; can do more things with, can make changes and we a	are allowed	d more		
Model Dispersion Predictions, Operational	00		inputs				
Environmental Atmosphere Model	60	70	Have other data in real-time, but necessary for looking out beyond a fe	ew hours			
Atmospheric Models: International-proxy	10						
National Blend of Models	10			Dorf	rmanco	(Satisfaction) Scale	
North American Mesoscale Model	30		Full array of information; second to GFS due to lack of coverage beyor	L CIII	Jimance		
High-Resolution Ensemble Forecast	10			100	1.1	Meets all requirements and	
Finite Volume Cubed Sphere dynamic core based Global	40			100	Ideal	exceeds some	
Forecast System	40		Full array of information. Most important atmospheric model		E. Ib.		
Geostationary Visible/Infrared Imagery	40	80	Big hit, can't meet requirements very well	90	Fully	Meets all requirements	
GOES-R ABI Support to Volcanic Ash Advisories	60		Most of AOR uses GOES 16/17		Satisfied		
Meteosat Second Generation SEVIRI	10					Meets all major requirements	
Himawari AHI	30		Useful for far western pacific (as well as for ash coming from eastern	80	Good	with minor limitations	
Global Seismographic Network	82	60	It helps and gives us an idea, but there are so many other sources of			with minor limitations	
In-Situ Upper Air	65	75	Can still do product, but will have some limitations			Meets most major	
GOS Upper Air Network	50		Not a lot of upper air stations where there are active volcanoes	60	Fair	requirements with significant	
Upper-air Rawinsonde Network	50		Useful (but not a significant loss)	00	Fall	· · · ·	
Polar Visible/Infrared Imagery (Low Resolution)	75	70				limitations	
JPSS VIIRS	35		two most important are SNPP and JPSS			Fails to meet many major	
SNPP VIIRS	35		two most important are SNPP and JPSS				
AQUA MODIS	15			40 200		requirements, but provides	
TERRA MODIS	15					some value	
Polar Visible/Infrared Imagery (Medium Resolution)	84	70	Very slight impact; does give some information that				
Landsat Operational Land Imager	30					Fails to meet most major	
Landsat Thermal Infrared Sensor	70		Plume definition can be seen with this sensor	20	Very Poor	requirements, but provides	
Volcanic Monitoring	60	70	Somewhat significant impact. Could meet customer requirements, bu			minor value	
Volcanic Monitoring	100	10	significantly degraded				
Human Reports	2		Primarily from PIREPs (and even then quite rare)	-	No		
USGS Volcano Observatories	25		Equally important to Int'l observatories(however, not as many active)	1	Canability	Provides no value	
International Volcano Observatories	25		Important, as many active volcanoes outside US		Capability		
Remote Video Monitoring	48						
Flightradar24 Sweden	84	70	Slight impact				
			Picks up ash from cloud-covered volcanoes, as well as nighttime erupt	ions. Lots o	of		
NOAA/CIMSS Volcanic Cloud Monitoring	70	80	information provided by this data source. CIMSS continually improving	it. Over tim	ne, this		
			data source will become more important				

GOES-R ABI Support to Volcanic Ash Advisories	80		AI cou	ld be added	; not a product just yet
ABI 1-Minute Refresh	79	80	Not ne	ecessary for	operations
ABI 5-Minute Refresh	1	80			
ABI Base Products	1	80]		
GOES-R Channel-02 (0.64 um) Red Band	15]			
GOES-R Channel-06 (2.24 um) Cloud Particle Size Band	1				
GOES-R Channel-07 (3.90 um) Shortwave Window Band	4		Perfo	ormance	(Satisfaction) Scale
GOES-R Channel-08 (6.19 um) Upper-Level Tropospheric Water Vapor Band	1	[100	Ideal	Meets all requirements and
GOES-R Channel-09 (6.93 um) Mid-Level Tropospheric Water Vapor Band	1	$ \downarrow$	100		exceeds some
GOES-R Channel-10 (7.34 um) Lower-level Water	1		90	Fully	Meets all requirements
GOES-R Channel-11 (8.44 um) Cloud-Top Phase Band	1	+		Jatisfieu	Maata all major roquiromonto
GOES-R Channel-12 (9.61 um) Ozone Band	2		80	Good	with minor limitations
GOES-R Channel-13 (10.33 um) Clean IR Longwave	4				Meets most major
GOES-R Channel-14 (11.21 um) IR Longwave Window Band	4		60	Fair	requirements, with significant
GOES-R Channel-15 (12.29 um) Dirty Longwave Window Band	4				limitations
GOES-R Channel-16 (13.28 um) CO2 longwave infrared	2				Fails to meet many maior
Air Mass RGB (6.19 - 7.34, 9.61 - 10.33, 6.19)	4		40	Poor	requirements, but provides
Ash RGB (12.29 - 10.33, 11.21 - 8.44, 10.33)	15				some value
CIMSS Natural Color RGB (0.64, 0.86, 0.47)	5				Fails to meet most maior
Dust RGB (12.29 - 10.33, 11.21 - 8.44, 10.33)	8		20	Very Poor	requirements, but provides
Nighttime Microphysics RGB (12.29 - 10.33, 10.33 - 3.9, 10.33)	12				minor value
SO2 RGB (6.93 - 7.34, 10.33 - 8.44, 10.33)	8			No	
Split Window Difference (SWD) GOES R-U Channel Difference (10.33 - 12.29)	5		1	Capability	Provides no value
Fire/Hot Spot Characterization GOES R-U Channel Difference (2.24 - 1.61)	2				

Advanced Baseline Imager (ABI) Channel/Baseline Product Dependence

GOES-R Channel-02 (0.64 um) Red Band	Night Fog Difference GOES R-U Channel Difference (10.33 - 3.9) High Interest in New Capability	Ash RGB (12.29 10.33, 11.21 - 8.44, 10.33) Product	- Day Clou RGE 0.86 Proc	/ Land ud Fires B (2.24, 6, 0.64) duct	F F (Fog GOE R-U Cha Differenc 3.9 - 10.	ES nnel æ 33)	Fire Temp RGB 2.24, Produ	erature (3.9, 1.61) Ict	C	Overall Dependence On Baseline Product
GOES-R Channel-01 (0.47 um) Blue Band High Interest in	GOES-R Channel-14 (11.21 um) IR Longwave Window Band High Interest in New Capability GOES-R Channel-13 (19.33 um)	Fire/Hot Spot	^T otal Precipita Vater Product	GC able Ch (13 CC Ion infr	ES-R annel 28 ur 2 gwave ared	2 Di -16 (1 m) 10 11 e 8. 10 Pr	ust RG 2.29 -).33, .21 - 44,).33) roduct	iB A R (6 7. 9. 10 6.	ir Mass GB 5.19 - 34, 61 - 0.33, 19)	(1	Box Size)
New Capability	Clean IR Longwave	CIMSS Natural Color RGB (0.64, 6.86, 0.47)		Lightning Detection: Events, Gr		GOES-R	t Sj W Va	plit /ater apor			
GOES-R Channel-09 (6.93 um) "Mid-Level Tropospheric Water Vapor" Band	GOES-R Channel-10 (7.34 um) "Lower-level Water High Interest in	Cloud Top Heigh Product	F F	Fla Pri GC GC Ima Ba	ES ger nd	GOI	ES Ima Nam	ager b 1e	and non Cei	inal wavelengths ntral Wavelength (μm)	(GOES-12 through 15) Objective
	New Capability	Cloud Top Press Product	ıre		L		Visib	ole		0.63	Cloud cover and surface features during the day, smoke, etc.
GOES-R Channel-08 (6.19 um) Upper-Level Tropospheric Water Vapor Band	GOES-R Channel-07 (3.90 um)			Da Ph	2	Shor	twave	windo	w	3.9	Low cloud/fog, fire detection, winds, etc.
4	Shortwave Window Band	Cloud Top			\$	- V	ater v	apor		6.48	Upper-level water vapor, winds, etc.
		Temperature Product	S ((SC .	ł	Long	gwave	windo	w	10.7	precipitation, etc.
) 5		N/A	and		N/A 12.2	IN/A CO. hand: Cloud detection at a
)		CO_2 Da	and		13.3	CO_2 band: Cloud detection, etc.

Geostationary Lightning Mapper (GLM) Dependence

Product Name	Impact	Perfor	mance		
Airmen's Meteorological Information (AIRMET) Ceiling and Visibility	0.28%	70	Perfo	ormance	(Satisfaction) Scale
Aviation Area Forecast	2.57%	80	100	Ideal	Meets all requirements and
Fire Weather Watch	0.41%	80	100	Ideal	exceeds some
Flash Flood Warning and Flash Flood Statement	0.47%	90	90	Fully Satisfied	Meets all requirements
Hot Spot Notifications	1.43%	80	80	Good	Meets all major requirements,
Red Flag Warning	0.41%	80		0000	with minor limitations
Severe Thunderstorm Warning and Severe Weather Statement	5.07%	75	60	Fair	Meets most major requirements, with significant
Significant Meteorological Information (SIGMET) Convection	4.06%	75			limitations
Significant Meteorological Information (SIGMET) Turbulence	0.52%	90			Fails to meet many major
Site Specific Fire Weather Spot Forecast	1.43%	80	40	Poor	requirements, but provides
Winter Storm Warning	0.11%	85			some value
			20	Very Poor	Fails to meet most major requirements, but provides minor value

No

Capability

1

Provides no value

		Perfo	rmance	(Satisfaction) Scale
e	00.00	100	Ideal	Meets all requirements and exceeds some
rmanc	÷	90	Fully Satisfied	Meets all requirements
[Perfo	-	80	Good	Meets all major requirements, with minor limitations
AVG(AB)	50.00	60	Fair	Meets most major requirements, with significant limitations
		40	Poor	Fails to meet many major requirements, but provides some value
		20	Very Poor	Fails to meet most major requirements, but provides minor value
		1	No Capability	Provides no value

	Imager	ABI
Average Performance Score	78.5	82.8
Standard Deviation	10.2	11.1
Population	34	19

What the Service SME's say...

- "Fantastic Imagery!" "GOES-16-17 is a game changer with 5 min CONUS Refresh"
- "Major improvement in Ash Detection Product"
- "Huge Contribution to the WFO Mesoscale Analysis"
- "Vis Fog Difference" and "Dust RGB" products are very important.
- Daytime Red visible channel (2) just as important as the nighttime microphysics products
- Tropical Storm support still needs the entire Geostationary Constellation + Himawari / Meteosat SG
- There is some sensitivity to the "loop heat pipe" issue in the western deployed GOES-17
- "Derived Fire Temperature for alerts still takes too long"
- Mesoscale 1-min imagery prioritized by the Senior Duty Met at WPC. Takes about ½ hour
- Parallax issue remains for northern latitudes

" Prioritize the availability and continuity of Earth observations " " Articulate the value of Earth observations "

IDA/Science and Technology Policy Institute

NOAA's Technology Planning and Integration for Observation